667 research outputs found

    Evolution of Multipolar Magnetic Fields in Isolated Neutron Stars and its effect on Pulsar Radio Emission

    Get PDF
    The evolution of the multipolar structure of the magnetic field of isolated neutron stars is studied assuming the currents to be confined to the crust. Lower orders (25\le 25) of multipole are seen to evolve in a manner similar to the dipole suggesting little or no evolution of the expected pulse shape. We also study the multifrequency polarization position angle traverse of PSR B0329+54 and find a significant frequency dependence above 2.7 GHz. We interpret this as an evidence of strong multipolar magnetic field present in the radio emission region.Comment: 2 pages, 2 figures, uses newpasp.sty, to appear in ASP Conf. Series, IAU Coll. 177 on Pulsar Astronomy-2000 and Beyond, ed. M. Kramer, N. Wex, R. Wielebinsk

    Constrains on parameters of magnetic field decay for accreting isolated neutron stars

    Get PDF
    The influence of exponential magnetic field decay (MFD) on the spin evolution of isolated neutron stars is studied. The ROSAT observations of several X-ray sources, which can be accreting old isolated neutron stars, are used to constrain the exponential and power-law decay parameters. We show that for the exponential decay the ranges of minimum value of magnetic moment, μb\mu_b, and the characteristic decay time, tdt_d, 1029.5μb1028Gcm3\sim 10^{29.5}\ge \mu_b \ge 10^{28} {\rm G} {\rm cm}^3, 108td107yrs\sim 10^8\ge t_d \ge 10^7 {\rm yrs} are excluded assuming the standard initial magnetic moment, μ0=1030Gcm3\mu_0=10^{30} {\rm G} {\rm cm}^3. For these parameters, neutron stars would never reach the stage of accretion from the interstellar medium even for a low space velocity of the stars and a high density of the ambient plasma. The range of excluded parameters increases for lower values of μ0\mu_0. We also show, that, contrary to exponential MFD, no significant restrictions can be made for the parameters of power-law decay from the statistics of isolated neutron star candidates in ROSAT observations. Isolated neutron stars with constant magnetic fields and initial values of them less than μ01029Gcm3\mu_0 \sim 10^{29} {\rm G} {\rm cm}^3 never come to the stage of accretion. We briefly discuss the fate of old magnetars with and without MFD, and describe parameters of old accreting magnetars.Comment: 18 pages, 6 PostScript figures, to be published in the Proceedings of the XXVIII ITEP Winter Schoo

    A multifrequency study of giant radio sources-II. Spectral ageing analysis of the lobes of selected sources

    Full text link
    Multifrequency observations with the GMRT and the VLA are used to determine the spectral breaks in consecutive strips along the lobes of a sample of selected giant radio sources (GRSs) in order to estimate their spectral ages. The maximum spectral ages estimated for the detected radio emission in the lobes of our sources range from \sim6 to 36 Myr with a median value of \sim20 Myr using the classical equipartition fields. Using the magnetic field estimates from the Beck & Krause formalism the spectral ages range from \sim5 to 38 Myr with a median value of \sim22 Myr. These ages are significantly older than smaller sources. In all but one source (J1313+6937) the spectral age gradually increases with distance from the hotspot regions, confirming that acceleration of the particles mainly occurs in the hotspots. Most of the GRSs do not exhibit zero spectral ages in the hotspots, as is the case in earlier studies of smaller sources. This is likely to be largely due to contamination by more extended emission due to relatively modest resolutions. The injection spectral indices range from \sim0.55 to 0.88 with a median value of \sim0.6. We discuss these values in the light of theoretical expectations, and show that the injection spectral index appears to be correlated with luminosity and/or redshift as well as with linear size.Comment: 12 Pages, 13 Figures, 9 Tables, Accepted for publication in MNRA

    Multi-lepton signals from the top-prime quark at the LHC

    Full text link
    We analyze the collider signatures of models with a vector-like top-prime quark and a massive color-octet boson. The top-prime quark mixes with the top quark in the Standard Model, leading to richer final states than ones that are investigated by experimental collaborations. We discuss the multi-lepton final states, and show that they can provide increased sensitivity to models with a top-prime quark and gluon-prime. Searches for new physics in high multiplicity events are an important component of the LHC program and complementary to analyses that have been performed.Comment: 7 pages, 4 figures, 2 table

    Restrictions on parameters of power-law magnetic field decay for accreting isolated neutron stars

    Get PDF
    In this short note we discuss the influence of power-law magnetic field decay on the evolution of old accreting isolated neutron stars. We show, that, contrary to exponential field decay (Popov & Prokhorov 2000), no additional restrictions can be made for the parameters of power-law decay from the statistics of isolated neutron star candidates in ROSAT observations. We also briefly discuss the fate of old magnetars with and without field decay, and describe parameters of old accreting magnetars.Comment: 8 pages including 3 PostScript figure

    Labile low-valent tin azides: syntheses, structural characterization, and thermal properties.

    Get PDF
    The first two examples of the class of tetracoordinate low-valent, mixed-ligand tin azido complexes, Sn(N3)2(L)2, are shown to form upon reaction of SnCl2 with NaN3 and SnF2 with Me3SiN3 in either pyridine or 4-picoline (2, L = py; 3, L = pic). These adducts of Sn(N3)2 are shock- and friction-insensitive and stable at r.t. under an atmosphere of pyridine or picoline, respectively. A new, fast, and efficient method for the preparation of Sn(N3)2 (1) directly from SnF2, and by the stepwise de-coordination of py from 2 at r.t., is reported that yields 1 in microcrystalline form, permitting powder X-ray diffraction studies. Reaction of 1 with a nonbulky cationic H-bond donor forms the salt-like compound {C(NH2)3}Sn(N3)3 (4) which is comparably stable despite its high nitrogen content (55%) and the absence of bulky weakly coordinating cations that are conventionally deemed essential in related systems of homoleptic azido metallates. The spectroscopic and crystallographic characterization of the polyazides 1-4 provides insight into azide-based H-bonded networks and unravels the previously unknown structure of 1 as an important lighter binary azide homologue of Pb(N3)2. The atomic coordinates for 1 and 2-4 were derived from powder and single crystal XRD data, respectively; those for 1 are consistent with predictions made by DFT-D calculations under periodic boundary conditions

    Radio Spectra of Giant Radio Galaxies from RATAN-600 Data

    Full text link
    Measurements of the flux densities of the extended components of seven giant radio galaxies obtained using the RATAN-600 radio telescope at wavelengths of 6.25 and 13 cm ar e presented. The spectra of components of these radio galaxies are constructed using these new RA TAN-600 data together with data from the WENSS, NVSS, and GB6 surveys. The spectral indices in the stu died frequency range are calculated, and the need for detailed estimates of the integrated contributi on of such objects to the background emission is demonstrated.Comment: 7 pages, 2 figures, 5 table

    The Evolution of Relativistic Binary Progenitor Systems

    Get PDF
    Relativistic binary pulsars, such as B1534+12 and B1913+16 are characterized by having close orbits with a binary separation of ~ 3 R_\sun. The progenitor of such a system is a neutron star, helium star binary. The helium star, with a strong stellar wind, is able to spin up its compact companion via accretion. The neutron star's magnetic field is then lowered to observed values of about 10^{10} Gauss. As the pulsar lifetime is inversely proportional to its magnetic field, the possibility of observing such a system is, thus, enhanced by this type of evolution. We will show that a nascent (Crab-like) pulsar in such a system can, through accretion-braking torques (i.e. the "propeller effect") and wind-induced spin-up rates, reach equilibrium periods that are close to observed values. Such processes occur within the relatively short helium star lifetimes. Additionally, we find that the final outcome of such evolutionary scenarios depends strongly on initial parameters, particularly the initial binary separation and helium star mass. It is, indeed, determined that the majority of such systems end up in the pulsar "graveyard", and only a small fraction are strongly recycled. This fact might help to reconcile theoretically expected birth rates with limited observations of relativistic binary pulsars.Comment: 24 pages, 10 Postscript figures, Submitted to The Astrophysical Journa

    On the Origin of X-ray Emission From Millisecond Pulsars in 47 Tuc

    Get PDF
    The observed spectra and X-ray luminosities of millisecond pulsars in 47 Tuc can be interpreted in the context of theoretical models based on strong, small scale multipole fields on the neutron star surface. For multipole fields that are relatively strong as compared to the large scale dipole field, the emitted X-rays are thermal and likely result from polar cap heating associated with the return current from the polar gap. On the other hand, for weak multipole fields, the emission is nonthermal and results from synchrotron radiation of e±e^{\pm} pairs created by curvature radiation. The X-ray luminosity, LxL_x, is related to the spin down power, LsdL_{sd}, expressed in the form LxLsdβL_x \propto L^{\beta}_{sd} with β0.5\beta \sim 0.5 and 1\sim 1 for strong and weak multipole fields respectively. If the polar cap size is of the order of the length scale of the multipole field, ss and β0.5\beta \sim 0.5, the polar cap temperature is 3×106K(Lsd1034ergs1)1/8(s3×104cm)1/2\sim 3 \times 10^6 K (\frac{L_{sd}}{10^{34}erg s^{-1}})^{1/8} (\frac{s}{3\times 10^4 cm})^{-1/2}. A comparison of the X-ray properties of millisecond pulsars in globular clusters and in the Galactic field suggests that the emergence of relatively strong small scale multipole fields from the neutron star interior may be correlated with the age and evolutionary history of the underlying neutron star.Comment: 25 pages, 2 figures, accepted for publication in Ap
    corecore