7 research outputs found

    Activation of XBP1 but not ATF6α rescues heart failure induced by persistent ER stress in medaka fish

    Get PDF
    The unfolded protein response is triggered in vertebrates by ubiquitously expressed IRE1α/β (although IRE1β is gut-specific in mice), PERK, and ATF6α/β, transmembrane-type sensor proteins in the ER, to cope with ER stress, the accumulation of unfolded and misfolded proteins in the ER. Here, we burdened medaka fish, a vertebrate model organism, with ER stress persistently from fertilization by knocking out the AXER gene encoding an ATP/ADP exchanger in the ER membrane, leading to decreased ATP concentration–mediated impairment of the activity of Hsp70- and Hsp90-type molecular chaperones in the ER lumen. ER stress and apoptosis were evoked from 4 and 6 dpf, respectively, leading to the death of all AXER-KO medaka by 12 dpf because of heart failure (medaka hatch at 7 dpf). Importantly, constitutive activation of IRE1α signaling --but not ATF6α signaling-- rescued this heart failure and allowed AXER-KO medaka to survive 3 d longer, likely because of XBP1-mediated transcriptional induction of ER-associated degradation components. Thus, activation of a specific pathway of the unfolded protein response can cure defects in a particular organ

    BAFF antagonist attenuates the development of skin fibrosis in Tight-Skin Mice

    Get PDF
    The tight-skin (TSK/+) mouse, a genetic model for systemic sclerosis (SSc), develops cutaneous fibrosis and autoimmunity. Although immunological abnormalities have been demonstrated in TSK/+ mice, the roles of B-cell-activating factor belonging to the tumor necrosis factor family (BAFF), a potent B-cell survival factor, have not been investigated. Serum BAFF levels in TSK/+ mice were examined by ELISA. Newborn TSK/+ mice were treated with BAFF antagonist, and then skin fibrosis of 8-week-old mice was assessed. Serum BAFF levels were significantly elevated in TSK/+ mice. Remarkably, BAFF antagonist inhibited the development of skin fibrosis, hyper-γ-globulinemia, and the autoantibody production in TSK/+ mice. The skin from TSK/+ mice showed upregulated expressions of fibrogenic cytokines, such as IL-6 and IL-10, while BAFF antagonist significantly suppressed them. Reciprocally, BAFF antagonist augmented antifibrogenic cytokines, such as IFN-γ, in the skin of TSK/+ mice. Furthermore, TSK/+ B cells with BAFF stimulation had a significantly enhanced ability to produce IL-6. The results suggest that BAFF/BAFF receptor system is critical for the development of skin fibrosis in TSK/+ mice and could be a potent therapeutical target. © 2007 The Society for Investigative Dermatology
    corecore