1,481 research outputs found

    Double quantum dots as a high sensitive submillimeter-wave detector

    Full text link
    A single electron transistor (SET) consisting of parallel double quantum dots fabricated in a GaAs/Alx_{x}Ga1x_{1-x}As heterostructure crystal is demonstrated to serve as an extremely high sensitive detector of submillimeter waves (SMMW). One of the double dots is ionized by SMMW via Kohn-mode plasma excitation, which affects the SET conductance through the other quantum dot yielding the photoresponse. Noise equivalent power of the detector for wavelengths about 0.6 mm is estimated to reach the order of 101710^{-17} W/Hz\sqrt{Hz} at 70 mK.Comment: 3 pages, 4 figures, REVTeX, submitted to Appl.Phys.Let

    Newcomers Meet the Intracluster Medium in the Coma Cluster

    Full text link
    A main topic at this meeting is how galaxies are affected when they enter for the first time the cluster environment from the outskirts. Most of the times we are forced to infer the environmental effects indirectly, relying on systematic variations of galaxy properties with environment, but there aren't many examples of direct observations able to unveil ongoing transformations taking place, and the corresponding mechanism producing it. We present a case in which it is possible to identify the cluster environment, and in particular the intracluster medium and the recent infall history of galaxies onto the cluster, as the cause for a recent, abrupt change in the evolutionary history of galaxies.Comment: 5 pages, 1 postscript figure -- to appear in "Outskirts of Galaxy Clusters: intense life in the suburbs", IAU Colloquium N. 195, 2004, ed. A Diaferi

    The habitat segregation between Lyman break galaxies and Ly alpha emitters around a QSO at z similar to 5

    Get PDF
    We carried out a target survey for Lyman break galaxies ( LBGs) and Ly alpha emitters ( LAEs) around QSO SDSS J0211- 0009 at z= 4. 87. The deep and wide broadband and narrowband imaging simultaneously revealed the perspective structure of these two high- z populations. The LBGs without Ly alpha emission form a filamentary structure including the QSO, while the LAEs are distributed around the QSO but avoid it within a distance of similar to 4.5Mpc. On the other hand, we serendipitously discovered a protocluster with a significant concentration of LBGs and LAEs, where no strongly UVionizing source, such as a QSO or radio galaxy, is known to exist. In this cluster field, the two populations are spatially cross- correlated with each other. The relative spatial distribution of LAEs to LBGs in the QSO field is in stark contrast to that in the cluster field. We also found a weak trend showing that the number counts based on Ly alpha and UV continuum fluxes of LAEs in the QSO field are slightly lower than in the cluster field, whereas the number counts of LBGs are almost consistent with each other. The LAEs avoid the nearby region around the QSO where the local UV background radiation could be similar to 100 times stronger than the average for the epoch. The clustering segregation between LBGs and LAEs seen in the QSO field could be due to either enhanced early galaxy formation in an overdense environment, causing all the LAEs to evolve into LBGs, or local photoionization due to the strong UV radiation from the QSO, effectively causing a deficit in low- mass galaxies like LAEs.ArticleThe Astrophysical Journal. 663:765-773 (2007)journal articl

    CSIP - a Novel Photon-Counting Detector Applicable for the SPICA Far-Infrared Instrument

    Full text link
    We describe a novel GaAs/AlGaAs double-quantum-well device for the infrared photon detection, called Charge-Sensitive Infrared Phototransistor (CSIP). The principle of CSIP detector is the photo-excitation of an intersubband transition in a QW as an charge integrating gate and the signal amplification by another QW as a channel with very high gain, which provides us with extremely high responsivity (10^4 -- 10^6 A/W). It has been demonstrated that the CSIP designed for the mid-infrared wavelength (14.7 um) has an excellent sensitivity; the noise equivalent power (NEP) of 7x10^-19 W/rHz with the quantum efficiency of ~2%. Advantages of the CSIP against the other highly sensitive detectors are, huge dynamic range of >10^6, low output impedance of 10^3 -- 10^4 Ohms, and relatively high operation temperature (>2K). We discuss possible applications of the CSIP to FIR photon detection covering 35 -- 60 um waveband, which is a gap uncovered with presently available photoconductors.Comment: To appear in Proc. Workshop "The Space Infrared Telescope for Cosmology & Astrophysics: Revealing the Origins of Planets and Galaxies". Eds. A.M. Heras, B. Swinyard, K. Isaak, and J.R. Goicoeche

    Multiple Scattering of Fractionally-Charged Quasiparticles

    Full text link
    We employ shot noise measurements to characterize the effective charge of quasiparticles, at filling factor nu=1/3 of the fractional quantum Hall regime, as they scatter from an array of identical weak backscatterers. Upon scattering, quasiparticles are known to bunch, e.g., only three e/3 charges, or 'electrons' are found to traverse a rather opaque potential barrier. We find here that the effective charge scattered by an array of scatterers is determined by the scattering strength of an individual scatterer and not by the combined scattering strength of the array, which can be very small. Moreover, we also rule out intra-edge equilibration of e/3 quasiparticles over length scale of hundreds microns.Comment: 4 pages, 4 figure

    Dynamic Nuclear Polarization in a Quantum Hall Corbino Disk

    Full text link
    Electrical polarization of nuclear spins is studied in a Corbino disk under a breakdown regime of the quantum Hall effect (QHE). Since the edge channels are completely absent in the Corbino disk, we conclude that the electric current flowing in the bulk channel of a quantum Hall conductor is relevant to dynamic nuclear polarization (DNP). A pump and probe measurement demonstrates that DNP emerges near the critical voltage of the QHE breakdown. The agreement of the onset voltage of DNP with that of the QHE breakdown indicates that the underlying origin of DNP is closely related to that of the QHE breakdown.Comment: 3 pages, 4 figure

    Quantum Hall line junction with impurities as a multi-slit Luttinger liquid interferometer

    Full text link
    We report on quantum interference between a pair of counterpropagating quantum Hall edge states that are separated by a high quality tunnel barrier. Observed Aharonov-Bohm oscillations are analyzed in terms of resonant tunneling between coupled Luttinger liquids that creates bound electronic states between pairs of tunnel centers that act like interference slits. We place a lower bound in the range of 20-40 μ\mum for the phase coherence length and directly confirm the extended phase coherence of quantum Hall edge states.Comment: 4 pages, 3 figures, 1 tabl

    SN 2016jhj at redshift 0.34: extending the Type II supernova Hubble diagram using the standard candle method

    Get PDF
    Although Type Ia supernova cosmology has now reached a mature state, it is important to develop as many independent methods as possible to understand the true nature of dark energy. Recent studies have shown that Type II supernovae (SNe II) offer such a path and could be used as alternative distance indicators. However, the majority of these studies were unable to extend the Hubble diagram above redshift z = 0.3 because of observational limitations. Here, we show that we are now ready to move beyond low redshifts and attempt high-redshift (z ≳ 0.3) SN II cosmology as a result of new-generation deep surveys such as the Subaru/Hyper Suprime-Cam survey. Applying the ´standard candle method´ to SN 2016jhj (z = 0.3398 ± 0.0002; discovered by HSC) together with a low-redshift sample, we are able to construct the highest-redshift SN II Hubble diagram to date with an observed dispersion of 0.27 mag (i.e. 12-13 per cent in distance). This work demonstrates the bright future of SN II cosmology in the coming era of large, wide-field surveys like that of the Large Synoptic Survey Telescope.Fil: de Jaeger, T.. University of California at Berkeley; Estados UnidosFil: Galbany, L.. University of Pittsburgh at Johnstown; Estados UnidosFil: Filippenko, A. V.. University of California at Berkeley; Estados UnidosFil: González Gaitán, S.. Universidad de Chile; ChileFil: Yasuda, N.. University of Tokio; JapónFil: Maeda, K.. University of Tokio; JapónFil: Tanaka, M.. University of Tokio; JapónFil: Morokuma, T.. University of Tokio; JapónFil: Moriya, T. J.. National Astronomical Observatory of Japan; JapónFil: Tominaga, N.. University of Tokyo; JapónFil: Nomoto, Ken’ichi. University of Tokyo; JapónFil: Komiyama, Y.. National Astronomical Observatory of Japan; JapónFil: Anderson, J. P.. European Southern Observatory; ChileFil: Brink, T. G.. University of California at Berkeley; Estados UnidosFil: Carlberg, R. G.. University of Toronto; CanadáFil: Folatelli, Gaston. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina. University of Tokyo; JapónFil: Hamuy, M.. Universidad de Chile; ChileFil: Pignata, G.. Universidad Andrés Bello; ChileFil: Zheng, W.. University of California at Berkeley; Estados Unido
    corecore