83 research outputs found

    Evolution of NMDA receptor cytoplasmic interaction domains: implications for organisation of synaptic signalling complexes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Glutamate gated postsynaptic receptors in the central nervous system (CNS) are essential for environmentally stimulated behaviours including learning and memory in both invertebrates and vertebrates. Though their genetics, biochemistry, physiology, and role in behaviour have been intensely studied <it>in vitro </it>and <it>in vivo</it>, their molecular evolution and structural aspects remain poorly understood. To understand how these receptors have evolved different physiological requirements we have investigated the molecular evolution of glutamate gated receptors and ion channels, in particular the <it>N</it>-methyl-<it>D</it>-aspartate (NMDA) receptor, which is essential for higher cognitive function. Studies of rodent NMDA receptors show that the C-terminal intracellular domain forms a signalling complex with enzymes and scaffold proteins, which is important for neuronal and behavioural plasticity</p> <p>Results</p> <p>The vertebrate NMDA receptor was found to have subunits with C-terminal domains up to 500 amino acids longer than invertebrates. This extension was specific to the NR2 subunit and occurred before the duplication and subsequent divergence of NR2 in the vertebrate lineage. The shorter invertebrate C-terminus lacked vertebrate protein interaction motifs involved with forming a signaling complex although the terminal PDZ interaction domain was conserved. The vertebrate NR2 C-terminal domain was predicted to be intrinsically disordered but with a conserved secondary structure.</p> <p>Conclusion</p> <p>We highlight an evolutionary adaptation specific to vertebrate NMDA receptor NR2 subunits. Using <it>in silico </it>methods we find that evolution has shaped the NMDA receptor C-terminus into an unstructured but modular intracellular domain that parallels the expansion in complexity of an NMDA receptor signalling complex in the vertebrate lineage. We propose the NR2 C-terminus has evolved to be a natively unstructured yet flexible hub organising postsynaptic signalling. The evolution of the NR2 C-terminus and its associated signalling complex may contribute to species differences in behaviour and in particular cognitive function.</p

    FAK is required for axonal sorting by Schwann cells

    Get PDF
    Signaling by laminins and axonal neuregulin has been implicated in regulating axon sorting by myelin-forming Schwann cells. However, the signal transduction mechanisms are unknown. Focal adhesion kinase (FAK) has been linked to α6β1 integrin and ErbB receptor signaling, and we show that myelination by Schwann cells lacking FAK is severely impaired. Mutant Schwann cells could interdigitate between axon bundles, indicating that FAK signaling was not required for process extension. However, Schwann cell FAK was required to stimulate cell proliferation, suggesting that amyelination was caused by insufficient Schwann cells. ErbB2 receptor and AKT were robustly phosphorylated in mutant Schwann cells, indicating that neuregulin signaling from axons was unimpaired. These findings demonstrate the vital relationship between axon defasciculation and Schwann cell number and show the importance of FAK in regulating cell proliferation in the developing nervous system

    Developmental disruption and restoration of brain synaptome architecture in the murine Pax6 neurodevelopmental disease model

    Get PDF
    Neurodevelopmental disorders of genetic origin delay the acquisition of normal abilities and cause disabling phenotypes. Nevertheless, spontaneous attenuation and even complete amelioration of symptoms in early childhood and adolescence can occur in many disorders, suggesting that brain circuits possess an intrinsic capacity to overcome the deficits arising from some germline mutations. We examined the molecular composition of almost a trillion excitatory synapses on a brain-wide scale between birth and adulthood in mice carrying a mutation in the homeobox transcription factor Pax6, a neurodevelopmental disorder model. Pax6 haploinsufficiency had no impact on total synapse number at any age. By contrast, the molecular composition of excitatory synapses, the postnatal expansion of synapse diversity and the acquisition of normal synaptome architecture were delayed in all brain regions, interfering with networks and electrophysiological simulations of cognitive functions. Specific excitatory synapse types and subtypes were affected in two key developmental age-windows. These phenotypes were reversed within 2-3 weeks of onset, restoring synapse diversity and synaptome architecture to the normal developmental trajectory. Synapse subtypes with rapid protein turnover mediated the synaptome remodeling. This brain-wide capacity for remodeling of synapse molecular composition to recover and maintain the developmental trajectory of synaptome architecture may help confer resilience to neurodevelopmental genetic disorders

    Automated design of genomic Southern blot probes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Sothern blotting is a DNA analysis technique that has found widespread application in molecular biology. It has been used for gene discovery and mapping and has diagnostic and forensic applications, including mutation detection in patient samples and DNA fingerprinting in criminal investigations. Southern blotting has been employed as the definitive method for detecting transgene integration, and successful homologous recombination in gene targeting experiments.</p> <p>The technique employs a labeled DNA probe to detect a specific DNA sequence in a complex DNA sample that has been separated by restriction-digest and gel electrophoresis. Critically for the technique to succeed the probe must be unique to the target locus so as not to cross-hybridize to other endogenous DNA within the sample.</p> <p>Investigators routinely employ a manual approach to probe design. A genome browser is used to extract DNA sequence from the locus of interest, which is searched against the target genome using a BLAST-like tool. Ideally a single perfect match is obtained to the target, with little cross-reactivity caused by homologous DNA sequence present in the genome and/or repetitive and low-complexity elements in the candidate probe. This is a labor intensive process often requiring several attempts to find a suitable probe for laboratory testing.</p> <p>Results</p> <p>We have written an informatic pipeline to automatically design genomic Sothern blot probes that specifically attempts to optimize the resultant probe, employing a brute-force strategy of generating many candidate probes of acceptable length in the user-specified design window, searching all against the target genome, then scoring and ranking the candidates by uniqueness and repetitive DNA element content. Using these <it>in silico </it>measures we can automatically design probes that we predict to perform as well, or better, than our previous manual designs, while considerably reducing design time.</p> <p>We went on to experimentally validate a number of these automated designs by Southern blotting. The majority of probes we tested performed well confirming our <it>in silico </it>prediction methodology and the general usefulness of the software for automated genomic Southern probe design.</p> <p>Conclusions</p> <p>Software and supplementary information are freely available at: <url>http://www.genes2cognition.org/software/southern_blot</url></p

    Learning and reaction times in mouse touchscreen tests are differentially impacted by mutations in genes encoding postsynaptic interacting proteins SYNGAP1 , NLGN3 , DLGAP1 , DLGAP2 and SHANK2

    Get PDF
    The postsynaptic terminal of vertebrate excitatory synapses contains a highly conserved multiprotein complex that comprises neurotransmitter receptors, cell-adhesion molecules, scaffold proteins and enzymes, which are essential for brain signalling and plasticity underlying behaviour. Increasingly, mutations in genes that encode postsynaptic proteins belonging to the PSD-95 protein complex, continue to be identified in neurodevelopmental disorders (NDDs) such as autism spectrum disorder, intellectual disability and epilepsy. These disorders are highly heterogeneous, sharing genetic aetiology and comorbid cognitive and behavioural symptoms. Here, by using genetically engineered mice and innovative touchscreen-based cognitive testing, we sought to investigate whether loss-of-function mutations in genes encoding key interactors of the PSD-95 protein complex display shared phenotypes in associative learning, updating of learned associations and reaction times. Our genetic dissection of mice with loss-of-function mutations in Syngap1, Nlgn3, Dlgap1, Dlgap2 and Shank2 showed that distinct components of the PSD-95 protein complex differentially regulate learning, cognitive flexibility and reaction times in cognitive processing. These data provide insights for understanding how human mutations in these genes lead to the manifestation of diverse and complex phenotypes in NDDs

    <em>In Vivo</em> Composition of NMDA Receptor Signaling Complexes Differs between Membrane Subdomains and Is Modulated by PSD-95 And PSD-93

    Get PDF
    Lipid rafts are dynamic membrane microdomains enriched in cholesterol and sphingolipids involved in the compartmentalization of signaling pathways, trafficking and sorting of proteins. At synapses, the glutamatergic NMDA receptor and its cytoplasmic scaffold protein PSD-95 move between postsynaptic density (PSD) and rafts following learning or ischemia. However it is not known if the signaling complexes formed by these proteins are different in rafts nor the molecular mechanisms that govern their localization. To examine these issues in vivo we used mice carrying genetically encoded tags for purification of protein complexes and specific mutations in NMDA receptors, PSD-95 and other postsynaptic scaffold proteins. Isolation of PSD-95 complexes from mice carrying tandem affinity purification tags showed differential composition in lipid rafts, postsynaptic density and detergent-soluble fractions. Raft PSD-95 complexes showed less CamKIIα and SynGAP and enrichment in Src and Arc/Arg3.1 compared with PSD complexes. Mice carrying knockouts of PSD-95 or PSD-93 show a key role for PSD-95 in localizing NR2A containing NMDA receptor complexes to rafts. Deletion of the NR2A carboxyl-terminus or the carboxyl-terminal valine residue of NR2B, which prevents all PDZ interactions, reduced the NR1 association with rafts. Interestingly, the deletion of the NR2B valine residue increased the total amount of lipid rafts. These data show critical roles for scaffold proteins and their interactions with NMDA receptor subunits in organizing the differential expression in rafts and postsynaptic densities of synaptic signaling complexes
    corecore