5 research outputs found

    Seasonal and inter-seasonal RSV activity in the European Region during the COVID-19 pandemic from autumn 2020 to summer 2022

    Get PDF
    © 2023 The Authors. Influenza and Other Respiratory Viruses published by John Wiley & Sons Ltd.Background: The emergence of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) in early 2020 and subsequent implementation of public health and social measures (PHSM) disrupted the epidemiology of respiratory viruses. This work describes the epidemiology of respiratory syncytial virus (RSV) observed during two winter seasons (weeks 40–20) and inter-seasonal periods (weeks 21–39) during the pandemic between October 2020 and September 2022. Methods: Using data submitted to The European Surveillance System (TESSy) by countries or territories in the World Health Organization (WHO) European Region between weeks 40/2020 and 39/2022, we aggregated country-specific weekly RSV counts of sentinel, non-sentinel and Severe Acute Respiratory Infection (SARI) surveillance specimens and calculated percentage positivity. Results for both 2020/21 and 2021/22 seasons and inter-seasons were compared with pre-pandemic 2016/17 to 2019/20 seasons and inter-seasons. Results: Although more specimens were tested than in pre-COVID-19 pandemic seasons, very few RSV detections were reported during the 2020/21 season in all surveillance systems. During the 2021 inter-season, a gradual increase in detections was observed in all systems. In 2021/22, all systems saw early peaks of RSV infection, and during the 2022 inter-seasonal period, patterns of detections were closer to those seen before the COVID-19 pandemic. Conclusion: RSV surveillance continued throughout the COVID-19 pandemic, with an initial reduction in transmission, followed by very high and out-of-season RSV circulation (summer 2021) and then an early start of the 2021/22 season. As of the 2022/23 season, RSV circulation had not yet normalised.Peer reviewe

    Respiratory Syncytial Virus G Protein Sequence Variability among Isolates from St. Petersburg, Russia, during the 2013–2014 Epidemic Season

    No full text
    Human respiratory syncytial virus (RSV) is the most common cause of upper and lower respiratory tract infections in infants and young children. It is actively evolving under environmental and herd immunity influences. This work presents, for the first time, sequence variability analysis of RSV G gene and G protein using St. Petersburg (Russia) isolates. Viruses were isolated in a cell culture from the clinical samples of 61 children hospitalized (January–April 2014) with laboratory-confirmed RSV infection. Real-time RT-PCR data showed that 56 isolates (91.8%) belonged to RSV-A and 5 isolates (8.2%) belonged to RSV-B. The G genes were sequenced for 27 RSV-A isolates and all of them belonged to genotype ON1/GA2. Of these RSV-A, 77.8% belonged to the ON1(1.1) genetic sub-cluster, and 14.8% belonged to the ON1(1.2) sub-cluster. The ON1(1.3) sub-cluster constituted a minor group (3.7%). Many single-amino acid substitutions were identified in the G proteins of St. Petersburg isolates, compared with the Canadian ON1/GA2 reference virus (ON67-1210A). Most of the amino acid replacements were found in immunodominant B- and T-cell antigenic determinants of G protein. These may affect the antigenic characteristics of RSV and influence the host antiviral immune response to currently circulating viruses

    Assessing the Intense Influenza A(H1N1)pdm09 Epidemic and Vaccine Effectiveness in the Post-COVID Season in the Russian Federation

    No full text
    The COVID-19 pandemic had a profound impact on influenza activity worldwide. However, as the pandemic progressed, influenza activity resumed. Here, we describe the influenza epidemic of high intensity of the 2022–2023 season. The epidemic had an early start and peaked in week 51.2022. The extremely high intensity of the epidemic may have been due to a significant decrease in herd immunity. The results of PCR-testing of 220,067 clinical samples revealed that the influenza A(H1N1)pdm09 virus dominated, causing 56.4% of positive cases, while A(H3N2) influenza subtype accounted for only 0.6%, and influenza B of Victoria lineage—for 34.3%. The influenza vaccine was found to be highly effective, with an estimated effectiveness of 92.7% in preventing admission with laboratory-confirmed influenza severe acute respiratory illness (SARI) cases and 54.7% in preventing influenza-like illness/acute respiratory illness (ILI/ARI) cases due to antigenic matching of circulated viruses with influenza vaccine strains for the season. Full genome next-generation sequencing of 1723 influenza A(H1N1)pdm09 viruses showed that all of them fell within clade 6B.1A.5.a2; nine of them possessed H275Y substitution in the NA gene, a genetic marker of oseltamivir resistance. Influenza A(H3N2) viruses belonged to subclade 3C.2a1b.2a.2 with the genetic group 2b being dominant. All 433 influenza B viruses belonged to subclade V1A.3a.2 encoding HA1 substitutions A127T, P144L, and K203R, which could be further divided into two subgroups. None of the influenza A(H3N2) and B viruses sequenced had markers of resistance to NA inhibitors. Thus, despite the continuing circulation of Omicron descendant lineages, influenza activity has resumed in full force, raising concerns about the intensity of fore coming seasonal epidemics
    corecore