78 research outputs found
Impulsive acceleration of strongly magnetized relativistic flows
The definitive version can be found at: http://onlinelibrary.wiley.com/ Copyright Royal Astronomical SocietyThe strong variability of magnetic central engines of active galactic nuclei (AGNs) and gamma-ray bursts (GRBs) may result in highly intermittent strongly magnetized relativistic outflows. We find a new magnetic acceleration mechanism for such impulsive flows that can be much more effective than the acceleration of steady-state flows. This impulsive acceleration results in kinetic-energy-dominated flows that are conducive to efficient dissipation at internal magnetohydrodynamic shocks on astrophysically relevant distances from the central source. For a spherical flow, a discrete shell ejected from the source over a time t0 with Lorentz factor Γ∼ 1 and initial magnetization σ0=B20/4πρ0c2≫ 1 quickly reaches a typical Lorentz factor Γ∼σ1/30 and magnetization σ∼σ2/30 at the distance R0≈ct0. At this point, the magnetized shell of width Δ∼R0 in the laboratory frame loses causal contact with the source and continues to accelerate by spreading significantly in its own rest frame. The expansion is driven by the magnetic pressure gradient and leads to relativistic relative velocities between the front and back of the shell. While the expansion is roughly symmetric in the centre of the momentum frame, in the laboratory frame, most of the energy and momentum remains in a region (or shell) of width Δ∼R0 at the head of the flow. This acceleration proceeds as Γ∼ (σ0R/R0)1/3 and σ∼σ2/30 (R/R0)-1/3 until reaching a coasting radius Rc∼R0σ20, where the kinetic energy becomes dominant: Γ∼σ0 and σ∼ 1 at Rc. The shell then starts coasting and spreading (radially), its width growing as Δ∼R0(R/Rc), causing its magnetization to drop as σ∼Rc/R at R > Rc. Given the typical variability time-scales of AGNs and GRBs, the magnetic acceleration in these sources is a combination of the quasi-steady-state collimation acceleration close to the source and the impulsive (conical or locally quasi-spherical) acceleration farther out. The interaction with the external medium, which can significantly affect the dynamics, is briefly addressed in the discussion.Peer reviewe
An algorithm for solving the pulsar equation
We present an algorithm of finding numerical solutions of pulsar equation.
The problem of finding the solutions was reduced to finding expansion
coefficients of the source term of the equation in a base of orthogo- nal
functions defined on the unit interval by minimizing a multi-variable mismatch
function defined on the light cylinder. We applied the algorithm to Scharlemann
& Wagoner boundary conditions by which a smooth solu- tion is reconstructed
that by construction passes success- fully the Gruzinov's test of the source
function exponent.Comment: 4 pages, 4 figures, accepted for publication in ApSS (a shortened
version of the previous one
Multidimensional relativistic MHD simulations of Pulsar Wind Nebulae: dynamics and emission
Pulsar Wind Nebulae, and the Crab nebula in particular, are the best cosmic
laboratories to investigate the dynamics of magnetized relativistic outflows
and particle acceleration up to PeV energies. Multidimensional MHD modeling by
means of numerical simulations has been very successful at reproducing, to the
very finest details, the innermost structure of these synchrotron emitting
nebulae, as observed in the X-rays. Therefore, the comparison between the
simulated source and observations can be used as a powerful diagnostic tool to
probe the physical conditions in pulsar winds, like their composition,
magnetization, and degree of anisotropy. However, in spite of the wealth of
observations and of the accuracy of current MHD models, the precise mechanisms
for magnetic field dissipation and for the acceleration of the non-thermal
emitting particles are mysteries still puzzling theorists to date. Here we
review the methodologies of the computational approach to the modeling of
Pulsar Wind Nebulae, discussing the most relevant results and the recent
progresses achieved in this fascinating field of high-energy astrophysics.Comment: 29 pages review, preliminary version. To appear in the book
"Modelling Nebulae" edited by D. Torres for Springer, based on the invited
contributions to the workshop held in Sant Cugat (Barcelona), June 14-17,
201
Cold Plasma Dispersion Relations in the Vicinity of a Schwarzschild Black Hole Horizon
We apply the ADM 3+1 formalism to derive the general relativistic
magnetohydrodynamic equations for cold plasma in spatially flat Schwarzschild
metric. Respective perturbed equations are linearized for non-magnetized and
magnetized plasmas both in non-rotating and rotating backgrounds. These are
then Fourier analyzed and the corresponding dispersion relations are obtained.
These relations are discussed for the existence of waves with positive angular
frequency in the region near the horizon. Our results support the fact that no
information can be extracted from the Schwarzschild black hole. It is concluded
that negative phase velocity propagates in the rotating background whether the
black hole is rotating or non-rotating.Comment: 27 pages, 11 figures accepted for publication in Gen. Relat. & Gravi
Force-free magnetosphere of an aligned rotator with differential rotation of open magnetic field lines
Here we briefly report on results of self-consistent numerical modeling of a
differentially rotating force-free magnetosphere of an aligned rotator. We show
that differential rotation of the open field line zone is significant for
adjusting of the global structure of the magnetosphere to the current density
flowing through the polar cap cascades. We argue that for most pulsars
stationary cascades in the polar cap can not support stationary force-free
configurations of the magnetosphere.Comment: 5 pages, 4 figures. Presented at the conference "Isolated Neutron
Stars: from the Interior to the Surface", London, April 24-28, 2006; to
appear in Astrophysics and Space Science. Significantly revised version, a
mistake found by ourselfs in the numerical code was corrected, all presented
results are obtained with the correct version of the cod
Magnetoluminescence
Pulsar Wind Nebulae, Blazars, Gamma Ray Bursts and Magnetars all contain
regions where the electromagnetic energy density greatly exceeds the plasma
energy density. These sources exhibit dramatic flaring activity where the
electromagnetic energy distributed over large volumes, appears to be converted
efficiently into high energy particles and gamma-rays. We call this general
process magnetoluminescence. Global requirements on the underlying, extreme
particle acceleration processes are described and the likely importance of
relativistic beaming in enhancing the observed radiation from a flare is
emphasized. Recent research on fluid descriptions of unstable electromagnetic
configurations are summarized and progress on the associated kinetic
simulations that are needed to account for the acceleration and radiation is
discussed. Future observational, simulation and experimental opportunities are
briefly summarized.Comment: To appear in "Jets and Winds in Pulsar Wind Nebulae, Gamma-ray Bursts
and Blazars: Physics of Extreme Energy Release" of the Space Science Reviews
serie
On the role of the current loss in radio pulsar evolution
The aim of this article is to draw attention to the importance of the
electric current loss in the energy output of radio pulsars. We remind that
even the losses attributed to the magneto-dipole radiation of a pulsar in
vacuum can be written as a result of an Ampere force action of the electric
currens flowing over the neutron star surface (Michel, 1991, Beskin et al.,
1993). It is this force that is responsible for the transfer of angular
momentum of a neutron star to an outgoing magneto-dipole wave. If a pulsar is
surrounded by plasma, and there is no longitudinal current in its
magnetosphere, there is no energy loss (Beskin et al., 1993, Mestel et al.,
1999). It is the longitudinal current closing within the pulsar polar cap that
exerts the retardation torque acting on the neutron star. This torque can be
determined if the structure of longitudinal current is known. Here we remind of
the solution by Beskin, Gurevitch & Istomin (1993) and discuss the validity of
such an assumption. The behavior of the recently observed "part-time job"
pulsar B1931+24 can be naturally explained within the model of current loss
while the magneto-dipole model faces difficulties.Comment: 4 pages, to appear in Astrophysics and Space Science, Special Issue:
Isolated Neutron Stars. In the replaced paper we amended several misprints
(coefficients in equations 12,14,15) and removed the excessive explanation
for the boundary condition (4
Particle Acceleration in Pulsar Wind Nebulae: PIC modelling
We discuss the role of particle-in-cell (PIC) simulations in unveiling the
origin of the emitting particles in PWNe. After describing the basics of the
PIC technique, we summarize its implications for the quiescent and the flaring
emission of the Crab Nebula, as a prototype of PWNe. A consensus seems to be
emerging that, in addition to the standard scenario of particle acceleration
via the Fermi process at the termination shock of the pulsar wind, magnetic
reconnection in the wind, at the termination shock and in the Nebula plays a
major role in powering the multi-wavelength signatures of PWNe.Comment: 32 pages, 16 figures, to appear in the book "Modelling Nebulae"
edited by D. Torres for Springer, based on the invited contributions to the
workshop held in Sant Cugat (Barcelona), June 14-17, 201
Extragalactic Relativistic Jets and Nuclear Regions in Galaxies
Past years have brought an increasingly wider recognition of the ubiquity of
relativistic outflows (jets) in galactic nuclei, which has turned jets into an
effective tool for investigating the physics of nuclear regions in galaxies. A
brief summary is given here of recent results from studies of jets and nuclear
regions in several active galaxies with prominent outflows.Comment: 5 pages; contribution to ESO Astrophysical Symposia, "Relativistic
Astrophysics and Cosmology", eds. B. Aschenbach, V. Burwitz, G. Hasinger, B.
Leibundgut (Springer: Heidelberg 2006
Cold Plasma Wave Analysis in Magneto-Rotational Fluids
This paper is devoted to investigate the cold plasma wave properties. The
analysis has been restricted to the neighborhood of the pair production region
of the Kerr magnetosphere. The Fourier analyzed general relativistic
magnetohydrodynamical equations are dealt under special circumstances and
dispersion relations are obtained. We find the -component of the complex
wave vector numerically. The corresponding components of the propagation
vector, attenuation vector, phase and group velocities are shown in graphs. The
direction and dispersion of waves are investigated.Comment: 22 pages, 18 figures, accepted for publication in Astrophys. Space
Sc
- …