50 research outputs found

    HIF1A reduces acute lung injury by optimizing carbohydrate metabolism in the alveolar epithelium

    Get PDF
    Background: While acute lung injury (ALI) contributes significantly to critical illness, it resolves spontaneously in many instances. The majority of patients experiencing ALI require mechanical ventilation. Therefore, we hypothesized that mechanical ventilation and concomitant stretch-exposure of pulmonary epithelia could activate endogenous pathways important in lung protection. Methods and Findings: To examine transcriptional responses during ALI, we exposed pulmonary epithelia to cyclic mechanical stretch conditions—an in vitro model resembling mechanical ventilation. A genome-wide screen revealed a transcriptional response similar to hypoxia signaling. Surprisingly, we found that stabilization of hypoxia-inducible factor 1A (HIF1A) during stretch conditions in vitro or during ventilator-induced ALI in vivo occurs under normoxic conditions. Extension of these findings identified a functional role for stretch-induced inhibition of succinate dehydrogenase (SDH) in mediating normoxic HIF1A stabilization, concomitant increases in glycolytic capacity, and improved tricarboxylic acid (TCA) cycle function. Pharmacologic studies with HIF activator or inhibitor treatment implicated HIF1A-stabilization in attenuating pulmonary edema and lung inflammation during ALI in vivo. Systematic deletion of HIF1A in the lungs, endothelia, myeloid cells, or pulmonary epithelia linked these findings to alveolar-epithelial HIF1A. In vivo analysis of 13C-glucose metabolites utilizing liquid-chromatography tandem mass-spectrometry demonstrated that increases in glycolytic capacity, improvement of mitochondrial respiration, and concomitant attenuation of lung inflammation during ALI were specific for alveolar-epithelial expressed HIF1A. Conclusions: These studies reveal a surprising role for HIF1A in lung protection during ALI, where normoxic HIF1A stabilization and HIF-dependent control of alveolar-epithelial glucose metabolism function as an endogenous feedback loop to dampen lung inflammation

    G2A Signaling Dampens Colitic Inflammation via Production of IFN-γ

    Get PDF
    Proinflammatory consequences have been described for lysophosphatidylcholine, a lipid product of cellular injury, signaling via the G protein–coupled receptor G2A on myeloid and lymphoid inflammatory cells. This prompted the hypothesis that genetic deletion of G2A would limit intestinal inflammation in a mouse model of colitis induced by dextran sodium sulfate. Surprisingly, G2A2/2 mice exhibited significantly worsened colitis compared with wild-type mice, as demonstrated by disease activity, colon shortening, histology, and elevated IL-6 and IL-5 in colon tissues. Investigation of inflammatory cells recruited to inflamed G2A2/2 colons showed significantly more TNF-a+ and Ly6ChiMHCII2 proinflammatory monocytes and eosinophils than in wild-type colons. Both monocytes and eosinophils were pathogenic as their depletion abolished the excess inflammation in G2A2/2 mice. G2A2/2 mice also had less IFN-g in inflamed colon tissues than wild-type mice. Fewer CD4+ lymphocytes were recruited to inflamed G2A2/2 colons, and fewer colonic lymphocytes produced IFN-g upon ex vivo stimulation. Administration of IFN-g to G2A2/2 mice during dextran sodium sulfate exposure abolished the excess colitic inflammation and reduced colonic IL-5 and eosinophil numbers to levels seen in wild-type mice. Furthermore, IFN-g reduced the numbers of TNF-a+ monocyte and enhanced their maturation from Ly6ChiMHCII2 to Ly6CintMHCII+ . Taken together, the data suggest that G2A signaling serves to dampen intestinal inflammation via the production of IFN-g, which, in turn, enhances monocyte maturation to a less inflammatory program and ultimately reduces eosinophil-induced injury of colonic tissues

    Reovirus-Induced Apoptosis Requires Mitochondrial Release of Smac/DIABLO and Involves Reduction of Cellular Inhibitor of Apoptosis Protein Levels

    No full text
    Many viruses belonging to diverse viral families with differing structure and replication strategies induce apoptosis both in cultured cells in vitro and in tissues in vivo. Despite this fact, little is known about the specific cellular apoptotic pathways induced during viral infection. We have previously shown that reovirus-induced apoptosis of HEK cells is initiated by death receptor activation but requires augmentation by mitochondrial apoptotic pathways for its maximal expression. We now show that reovirus infection of HEK cells is associated with selective cytosolic release of the mitochondrial proapoptotic factors cytochrome c and Smac/DIABLO, but not the release of apoptosis-inducing factor. Release of these factors is not associated with loss of mitochondrial transmembrane potential and is blocked by overexpression of Bcl-2. Stable expression of caspase-9b, a dominant-negative form of caspase-9, blocks reovirus-induced caspase-9 activation but fails to significantly reduce activation of the key effector caspase, caspase-3. Smac/DIABLO enhances apoptosis through its action on cellular inhibitor of apoptosis proteins (IAPs). Reovirus infection is associated with selective down-regulation of cellular IAPs, including c-IAP1, XIAP, and survivin, effects that are blocked by Bcl-2 expression, establishing the dependence of IAP down-regulation on mitochondrial events. Taken together, these results are consistent with a model in which Smac/DIABLO-mediated inhibition of IAPs, rather than cytochrome c-mediated activation of caspase-9, is the key event responsible for mitochondrial augmentation of reovirus-induced apoptosis. These studies provide the first evidence for the association of Smac/DIABLO with virus-induced apoptosis

    Metabolic regulation in the lactating mammary gland: a lipid synthesizing machine

    No full text
    The mammary gland of the lactating mouse synthesizes and secretes milk lipid equivalent to its entire body weight in a single 20-day lactation cycle, making it one of the most active lipid synthetic organs known. We test the hypothesis that multiple control points and potential regulatory mechanisms regulate milk lipid synthesis at the level of gene expression. The mammary transcriptome of 130 genes involved in glucose metabolism was examined at late pregnancy and early lactation, utilizing data obtained from microarray analysis of mammary glands from quadruplicate FVB mice at pregnancy day 17 and lactation day 2. To correlate changes with physiological parameters, the metabolome obtained from magnetic resonance spectroscopy of flash-frozen glands at day 17 of pregnancy was compared with that at day 2 of lactation. A significant increase in carbohydrates (glucose, lactose, sialic acid) and amino acids (alanine, aspartate, arginine, glutamate) with a moderate increase in important osmolytes (myo-inositol, betaine, choline derivatives) were observed in the lactating gland. In addition, diets containing 8% or 40% lipid were fed from lactation days 5–10 and mammary glands and livers of triplicate FVB mice prepared for microarray analysis. The results show that substantial regulation of lipid synthesis occurs at the level of mRNA expression and that some of the regulation points differ substantially from the liver. They also implicate the transcription factor SREBP-1c in regulation of part of the pathway
    corecore