23 research outputs found

    Evaluation of the immunomodulatory activities of the probiotic strain lactobacillus fermentum UCO-979C

    Get PDF
    Lactobacillus fermentum UCO-979C, a strain isolated from a human stomach, was previously characterized by its potential probiotic properties. The UCO-979C strain displayed the ability to beneficially regulate the innate immune response triggered by Helicobacter pylori infection in human gastric epithelial cells. In this work, we conducted further in vitro studies in intestinal epithelial cells (IECs) and in vivo experiments in mice in order to characterize the potential immunomodulatory effects of L. fermentum UCO-979C on the intestinal mucosa. Results demonstrated that the UCO-979C strain is capable to differentially modulate the immune response of IECs triggered by Toll-like receptor 4 (TLR4) activation through the modulation of TLR negative regulators' expression. In addition, we demonstrated for the first time that L. fermentum UCO-979C is able to exert its immunomodulatory effect in the intestinal mucosa in vivo. The feeding of mice with L. fermentum UCO-979C significantly increased the production of intestinal IFN-γ, stimulated intestinal and peritoneal macrophages and increased the number of Peyer's patches CD4+ T cells. In addition, L. fermentum UCO-979C augmented intestinal IL-6, reduced the number of immature B220+CD24high B cells from Peyer's patches, enhanced the number of mature B B220+CD24low cells, and significantly increased intestinal IgA content. The results of this work revealed that L. fermentum UCO-979C has several characteristics making it an excellent candidate for the development of immunobiotic functional foods aimed to differentially regulate immune responses against gastric and intestinal pathogens.Fil: Garcia Castillo, Valeria. Tohoku University; Japón. Universidad de Concepción; Chile. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Centro de Referencia para Lactobacilos; ArgentinaFil: Komatsu, Ryoya. Tohoku University; JapónFil: Clua, Maria Patricia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Centro de Referencia para Lactobacilos; ArgentinaFil: Indo, Yuhki. Tohoku University; JapónFil: Takagi, Michihiro. Tohoku University; JapónFil: Salva, Maria Susana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Centro de Referencia para Lactobacilos; ArgentinaFil: Islam, M. Aminul. Bangladesh Agricultural University; Bangladesh. Tohoku University; JapónFil: Alvarez, Gladis Susana. Universidad Nacional de Tucumán. Facultad de Bioquímica, Química y Farmacia; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Centro de Referencia para Lactobacilos; ArgentinaFil: Takahashi, Hideki. Tohoku University; JapónFil: Garcia Cancino, Apolinaria. Universidad de Concepción; ChileFil: Kitazawa, Haruki. Tohoku University; JapónFil: Villena, Julio Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Centro de Referencia para Lactobacilos; Argentina. Tohoku University; Japó

    Transcriptome analysis of the inflammatory responses of bovine mammary epithelial cells: Exploring immunomodulatory target genes for bovine mastitis

    Get PDF
    Bovine mastitis is the inflammatory reaction of the mammary gland and is commonly caused by bacterial infections in high-yielding dairy cows. The detailed investigation of the immunotranscriptomic response of bovine mammary epithelial (BME) cells to pattern recognition receptors (PRRs) activation by microbial-associated molecular patterns (MAMPs) can be of great importance for understanding the innate immune defense mechanisms, and for exploring the immunomodulatory candidate genes. In this work, we investigated the transcriptome modifications of BME cells after the in vitro stimulation with Escherichia coli derived lipopolysaccharide (LPS) and heat-killed Staphylococcus aureus JE2 and S. aureus SA003. In addition, the effect of Pam3CSK4 (a synthetic triacylated lipopeptide that activates Toll-like receptor 2 (TLR2)), and the intracellular chemotactic protein cyclophilin A (CyPA), which is secreted by BME cells during mastitis, in the expression changes of selected cytokines and chemokines were evaluated by qPCR. Microarray analysis identified 447, 465 and 520 differentially expressed genes (DEGs) in the BME cells after LPS, S. aureus JE2 and S. aureus SA003 stimulation, respectively. A major differential response in the inflammatory gene expression was noticed between the stimulation of LPS and S. aureus strains. Unlike the S. aureus strains, LPS stimulation resulted in significant upregulation of CCL2, CXCL2, CXCL3, CXCL8, IL1α and IL1β, which were confirmed by qPCR analysis. Pam3CSK4 was not able to induce significant changes in the expression of cytokines and chemokines in challenged BME cells. The exogenous CyPA administration was able to upregulate CXCL2, CXCL3, CXCL8, IL1α and IL1β expression in BME cells indicating its ability to promote inflammation. The identification of transcriptional markers of mastitis specific for individual inflammatory factors such as LPS, Pam3CSK4 or CyPA, which can be evaluated in vitro in BME cells, may enable the development of novel diagnostics and/or immunomodulatory treatments, providing new tools for the effective management of mastitis in dairy cows. The results of this work are an advance in this regard.Fil: Islam, Md Aminul. Bangladesh Agricultural University; Bangladesh. Tohoku University; JapónFil: Takagi, Michihiro. Tohoku University; JapónFil: Fukuyama, Kohtaro. Tohoku University; JapónFil: Komatsu, Ryoya. Tohoku University; JapónFil: Albarracín, Leonardo Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Centro de Referencia para Lactobacilos; Argentina. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología; Argentina. Tohoku University; JapónFil: Nochi, Tomonori. Tohoku University; JapónFil: Suda, Yoshihito. Miyagi University; JapónFil: Ikeda Ohtsubo, Wakako. Tohoku University; JapónFil: Rutten, Victor. Utrecht University; Países Bajos. University of Pretoria; SudáfricaFil: van Eden, Willem. Utrecht University; Países BajosFil: Villena, Julio Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Centro de Referencia para Lactobacilos; Argentina. Tohoku University; JapónFil: Aso, Hisashi. Tohoku University; JapónFil: Kitazawa, Haruki. Tohoku University; Japó

    Genomic Characterization of Lactobacillus delbrueckii TUA4408L and Evaluation of the Antiviral Activities of its Extracellular Polysaccharides in Porcine Intestinal Epithelial Cells

    Get PDF
    In lactic acid bacteria, the synthesis of exopolysaccharides (EPS) has been associated with some favorable technological properties as well as health-promoting benefits. Research works have shown the potential of EPS produced by lactobacilli to differentially modulate immune responses. However, most studies were performed in immune cells and few works have concentrated in the immunomodulatory activities of EPS in non-immune cells such as intestinal epithelial cells. In addition, the cellular and molecular mechanisms involved in the immunoregulatory effects of EPS have not been studied in detail. In this work, we have performed a genomic characterization of Lactobacillus delbrueckii subsp. delbrueckii TUA4408L and evaluated the immunomodulatory and antiviral properties of its acidic (APS) and neutral (NPS) EPS in porcine intestinal epithelial (PIE) cells. Whole genome sequencing allowed the analysis of the general features of L. delbrueckii TUA4408L genome as well as the characterization of its EPS genes. A typical EPS gene cluster was found in the TUA4408L genome consisting in five highly conserved genes epsA-E, and a variable region, which includes the genes for the polymerase wzy, the flippase wzx, and seven glycosyltransferases. In addition, we demonstrated here for the first time that L. delbrueckii TUA4408L and its EPS are able to improve the resistance of PIE cells against rotavirus infection by reducing viral replication and regulating inflammatory response. Moreover, studies in PIE cells demonstrated that the TUA4408L strain and its EPS differentially modulate the antiviral innate immune response triggered by the activation of Toll-like receptor 3 (TLR3). L. delbrueckii TUA4408L and its EPS are capable of increasing the activation of interferon regulatory factor (IRF)-3 and nuclear factor κB (NF-κB) signaling pathways leading to an improved expression of the antiviral factors interferon (IFN)-β, Myxovirus resistance gene A (MxA) and RNaseL

    INSIG2 gene rs7566605 polymorphism is associated with severe obesity in Japanese

    Get PDF
    The single nucleotide polymorphism (SNP) rs7566605 in the upstream region of the insulin-induced gene 2 (INSIG2) is associated with the obesity phenotype in many Caucasian populations. In Japanese, this association with the obesity phenotype is not clear. To investigate the relationship between rs7566605 and obesity in Japanese, we genotyped rs7566605 from severely obese subjects [n = 908, body mass index (BMI) ≥ 30 kg/m2] and normal-weight control subjects (n = 1495, BMI < 25 kg/m2). A case–control association analysis revealed that rs7566605 was significantly associated with obesity in Japanese. The P value in the minor allele recessive mode was 0.00020, and the odds ratio (OR) adjusted for gender and age was 1.61 [95% confidential interval (CI) = 1.24–2.09]. Obesity-associated phenotypes, which included the level of BMI, plasma glucose, hemoglobin A1c, total cholesterol, triglycerides, high-density lipoprotein (HDL) cholesterol, and blood pressure, were not associated with the rs7566605 genotype. Thus, rs7566605 in the upstream region of the INSIG2 gene was found to be associated with obesity, i.e., severe obesity, in Japanese

    Deciphering the influence of paraimmunobiotic bifidobacteria on the innate antiviral immune response of bovine intestinal epitheliocytes by transcriptomic analysis

    No full text
    Previously, we reported that the non-viable immunomodulatory Bifidobacterium infantis MCC12 and Bifidobacterium breve MCC1274 strains (paraimmunobiotic bifidobacteria) were able to increase the protection against rotavirus infection in bovine intestinal epithelial (BIE) cells. In order to gain insight into the influence of paraimmunobiotic bifidobacteria on the innate antiviral immune response of BIE cells, their effect on the transcriptomic response triggered by Toll-like receptor 3 (TLR3) activation was investigated. By using microarray technology and qPCR analysis, we obtained a global overview of the immune genes involved in the innate antiviral immune response in BIE cells. Activation of TLR3 by poly(I:C) in BIE cells significantly increased the expression of interferon (IFN)-α and IFN-β, several interferon-stimulated genes, cytokines, and chemokines. It was also observed that both paraimmunobiotic bifidobacteria differently modulated immune genes expression in poly(I:C)-challenged BIE cells. Most notable changes were found in genes involved in antiviral defence (IFN-β, MX1, OAS1X, MDA5, TLR3, STAT2, STAT3), cytokines (interleukin (IL)-6), and chemokines (CCL2, CXCL2, CXCL6) that were significantly increased in bifidobacteria-treated BIE cells. B. infantis MCC12 and B. breve MCC1274 showed quantitative and qualitative differences in their capacities to modulate the innate antiviral immune response in BIE cells. B. breve MCC1274 was more efficient than the MCC12 strain to improve the production of type I IFNs and antiviral factors, an effect that could be related to its higher ability to protect against rotavirus replication in BIE cells. Interestingly, B. infantis MCC12 showed a remarkable anti-inflammatory effect. The MCC12 strain was more efficient to reduce the expression of inflammatory cytokines and chemokines (IL-16, IL-20, CX3CL1) when compared with B. breve MCC1274. These results provided valuable information for the deeper understanding of the antiviral immune response of intestinal epithelial cells as well as the host-paraimmunobiotic interaction in the bovine host.Fil: Albarracín, Leonardo Miguel. Tohoku University. Graduate School of Agricultural Science; Japón. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Centro de Referencia para Lactobacilos; Argentina. Universidad Nacional de Tucumán; ArgentinaFil: Komatsu, Ryoya. Tohoku University. Graduate School of Agricultural Science; JapónFil: Garcia-Castillo, Valeria. Tohoku University. Graduate School of Agricultural Science; Japón. Universidad de Concepción; ChileFil: Aso, Hisashi. Tohoku University. Graduate School of Agricultural Science; JapónFil: Iwabuchi, Norisuke. Morinaga Milk Industry Co. Ltd; JapónFil: Xiao, Jin-Zhong. Morinaga Milk Industry Co. Ltd; JapónFil: Abe, Fumiaki. Morinaga Milk Industry Co. Ltd; JapónFil: Takahashi, Hideki. Tohoku University. Graduate School of Agricultural Science; JapónFil: Villena, Julio Cesar. Tohoku University. Graduate School of Agricultural Science; Japón. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Centro de Referencia para Lactobacilos; ArgentinaFil: Kitazawa, Haruki. Tohoku University. Graduate School of Agricultural Science; Japó

    Development of an immunobiotic evaluation system using bovine mammary epithelial cells

    No full text
    Mastitis, the inflammation of mammary glands, is one of the most costly diseases of dairy industry, which is often caused by pathogenic bacteria. Antimicrobials are applied for the treatment and prevention of bovine mastitis but their indiscriminate use arouses concerns of residual contamination and increased risk of emerging drug-resistant bacteria. Immunoregulatory probiotics (immunobiotics) are considered as potential substitute for antimicrobials for the prevention of bovine mastitis. In this work, an in vitro system for the evaluation of immunobiotics with beneficial effects against mastitis was developed by using an originally established bovine mammary epithelial cell line (BMECs). BMECs ability to respond to TLR4 activation was evaluated by stimulating cells with LPS for 12h and analyzing the global gene expression changes with a porcine microarray-based transcriptomic assay. A total of 429 genes were differently expressed after LPS stimulation and the most significant change was the up-regulation of inflammatory cytokines and chemokines (p<0.05). The enhanced expressions of IL-1β, IL-8/CXCL8, MIP2-α/CXCL2, MIP2-β/CXCL3, and MCP-1/CCL2 in BMECs after TLR4 activation were confirmed by qRT-PCR. The ability of lactobacilli isolated from feed-lot environment to modulate TLR4-mediated immune response in BMECs was also studied. BMECs were stimulated with Lactobacillus acidophilus CRL2074, L. mucosae CRL2069, L. fermentum CRL2085, or L. rhamnosus CRL2084 for 12h, 24h or 48h and then challenged with LPS for 12h. A strain dependent ability to differentially modulate inflammatory cytokines and chemokines in lactobacilli-treated BMECs was observed. The results indicate that BMECs can be used as a useful in vitro evaluation system for immunobiotics evaluation.Fil: Takagi, Michihiro. University of Tohoku; JapónFil: Komatsu, Ryoya. University of Tohoku; JapónFil: Albarracín, Leonardo Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Centro de Referencia para Lactobacilos; Argentina. University of Tohoku; JapónFil: Mansilla, Flavia Ivana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Centro de Referencia para Lactobacilos; Argentina. University of Tohoku; JapónFil: Islam, Md. Aminul. University of Tohoku; JapónFil: Suda, Yoshihito. University of Miyagi; JapónFil: Ikeda-Ohtsubo, Wakako. University of Tohoku; JapónFil: Nochi, Tomonori. University of Tohoku; JapónFil: Vignolo, Graciela Margarita. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Centro de Referencia para Lactobacilos; Argentina. University of Tohoku; JapónFil: Aso, Hisashi. University of Tohoku; JapónFil: Villena, Julio Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Centro de Referencia para Lactobacilos; Argentina. University of Tohoku; JapónFil: Kitazawa, Haruki. University of Tohoku; JapónLXVII Reunión Científica Anual de la Sociedad Argentina de InmunologíaSan Miguel de TucumánArgentinaSociedad Argentina de Inmunologí

    Exopolysaccharides from Lactobacillus delbrueckii OLL1073R-1 modulate innate antiviral immune response in porcine intestinal epithelial cells

    No full text
    Previous studies demonstrated that the extracellular polysaccharides (EPSs) produced by Lactobacillus delbrueckii OLL1073R-1 (LDR-1) improve antiviral immunity, especially in the systemic and respiratory compartments. However, it was not studied before whether those EPSs are able to beneficially modulate intestinal antiviral immunity. In addition, LDR-1-host interaction has been evaluated mainly with immune cells while its interaction with intestinal epithelial cells (IECs) was not addressed before. In this work, we investigated the capacity of EPSs from LDR-1 to modulate the response of porcine IECs (PIE cells) to the stimulation with the Toll-like receptor (TLR)-3 agonist poly(I:C) and the role of TLR2, TLR4, and TLR negative regulators in the immunoregulatory effect. We showed that innate immune response triggered by TLR3 activation in porcine IECs was differentially modulated by EPS from LDR-1. EPSs treatment induced an increment in the expression of interferon (IFN)-α and IFN-β in PIE cells after the stimulation with poly(I:C) as well as the expression of the antiviral factors MxA and RNase L. Those effects were related to the reduced expression of A20 in EPS-treated PIE cells. EPS from LDR-1 was also able to reduce the expression of IL-6 and proinflammatory chemokines. Although further in vivo studies are needed, our results suggest that these EPSs or a yogurt fermented with LDR-1 have potential to improve intestinal innate antiviral response and protect against intestinal viruses.Fil: Kanmani, Paulraj. Tohoku University; JapónFil: Albarracín, Leonardo Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Centro de Referencia para Lactobacilos; Argentina. Tohoku University; JapónFil: Kobayashi, Hisakazu. Tohoku University; JapónFil: Iida, Hikaru. Tohoku University; JapónFil: Komatsu, Ryoya. Tohoku University; JapónFil: Kober, Humayun A. K. M.. Tohoku University; Japón. Chittagong Veterinary and Animal Sciences University. Department of Dairy & Poultry Science; BangladeshFil: Ikeda-Ohtsubo, Wakako. Tohoku University; JapónFil: Suda, Yoshihito. Miyagi University. Department of Food, Agriculture and Environment; JapónFil: Aso, Hisashi. Tohoku University; JapónFil: Makino, Seiya. Meiji Co., Ltd. Food Science Research Laboratory; JapónFil: Kano, Hiroshi. Meiji Co., Ltd. Food Science Research Laboratory; JapónFil: Saito, Tadao. Tohoku University; JapónFil: Villena, Julio Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Centro de Referencia para Lactobacilos; Argentina. Tohoku University; JapónFil: Kitazawa, Haruki. Tohoku University; Japó

    Genetic variations in the CYP17A1 and NT5C2 genes are associated with a reduction in visceral and subcutaneous fat areas in Japanese women.

    Get PDF
    Visceral fat accumulation has an important role in increasing the morbidity and mortality rates, by increasing the risk of developing several metabolic disorders, such as type 2 diabetes, dyslipidemia and hypertension. New genetic loci that are associated with increased systolic and diastolic blood pressures have been identified by genome-wide association studies in Caucasian populations. This study investigates whether single nucleotide polymorphisms (SNPs) that confer susceptibility to high blood pressure are also associated with visceral fat obesity. We genotyped 1279 Japanese subjects (556 men and 723 women) who underwent computed tomography for measuring the visceral fat area (VFA) and subcutaneous fat area (SFA) at the following SNPs: FGF5 rs16998073, CACNB2 rs11014166, C10orf107 rs1530440, CYP17A1 rs1004467, NT5C2 rs11191548, PLEKHA7 rs381815, ATP2B1 rs2681472 and rs2681492, ARID3B rs6495112, CSK rs1378942, PLCD3 rs12946454, and ZNF652 rs16948048. In an additive model, risk alleles of the CYP17A1 rs1004467 and NT5C2 rs11191548 were found to be significantly associated with reduced SFA (P=0.00011 and 0.0016, respectively). When the analysis was performed separately in men and women, significant associations of rs1004467 (additive model) and rs11191548 (recessive model) with reduced VFA (P=0.0018 and 0.0022, respectively) and SFA (P=0.00039 and 0.00059, respectively) were observed in women, but not in men. Our results suggest that polymorphisms in the CYP17A1 and NT5C2 genes influence a reduction in both visceral and subcutaneous fat mass in Japanese women

    Genomic characterization of lactobacillus delbrueckii TUA4408L and evaluation of the antiviral activities of its extracellular polysaccharides in porcine intestinal epithelial cells

    Get PDF
    In lactic acid bacteria, the synthesis of exopolysaccharides (EPS) has been associated with some favorable technological properties as well as health-promoting benefits. Research works have shown the potential of EPS produced by lactobacilli to differentially modulate immune responses. However, most studies were performed in immune cells and few works have concentrated in the immunomodulatory activities of EPS in non-immune cells such as intestinal epithelial cells. In addition, the cellular and molecular mechanisms involved in the immunoregulatory effects of EPS have not been studied in detail. In this work, we have performed a genomic characterization of Lactobacillus delbrueckii subsp. delbrueckii TUA4408L and evaluated the immunomodulatory and antiviral properties of its acidic (APS) and neutral (NPS) EPS in porcine intestinal epithelial (PIE) cells. Whole genome sequencing allowed the analysis of the general features of L. delbrueckii TUA4408L genome as well as the characterization of its EPS genes. A typical EPS gene cluster was found in the TUA4408L genome consisting in five highly conserved genes epsA-E, and a variable region, which includes the genes for the polymerase wzy, the flippase wzx, and seven glycosyltransferases. In addition, we demonstrated here for the first time that L. delbrueckii TUA4408L and its EPS are able to improve the resistance of PIE cells against rotavirus infection by reducing viral replication and regulating inflammatory response. Moreover, studies in PIE cells demonstrated that the TUA4408L strain and its EPS differentially modulate the antiviral innate immune response triggered by the activation of Toll-like receptor 3 (TLR3). L. delbrueckii TUA4408L and its EPS are capable of increasing the activation of interferon regulatory factor (IRF)-3 and nuclear factor κB (NF-κB) signaling pathways leading to an improved expression of the antiviral factors interferon (IFN)-β, Myxovirus resistance gene A (MxA) and RNaseL.Fil: Kanmani, Paulraj. Tohoku University. Graduate School of Agricultural Science. Food and Feed Immunology Group, Laboratory of Animal Products Chemistry; JapónFil: Albarracín, Leonardo Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Centro de Referencia para Lactobacilos; Argentina. Tohoku University. Graduate School of Agricultural Science. Food and Feed Immunology Group, Laboratory of Animal Products Chemistry; JapónFil: Kobayashi, Hisakazu. Tohoku University. Graduate School of Agricultural Science. Food and Feed Immunology Group, Laboratory of Animal Products Chemistry; JapónFil: Hebert, Elvira Maria. Tohoku University. Graduate School of Agricultural Science. Food and Feed Immunology Group, Laboratory of Animal Products Chemistry; Japón. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Centro de Referencia para Lactobacilos; ArgentinaFil: Saavedra, Maria Lucila. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Centro de Referencia para Lactobacilos; ArgentinaFil: Komatsu, Ryoya. Tohoku University. Graduate School of Agricultural Science. Food and Feed Immunology Group, Laboratory of Animal Products Chemistry; JapónFil: Gatica, Brian. University of Concepcion. Departmento de Farmacología; ChileFil: Miyazaki, Ayako. National Institute of Animal Health. Viral Diseases and Epidemiology Research Division; JapónFil: Ikeda-Ohtsubo, Wakako. Tohoku University. Graduate School of Agricultural Science. Food and Feed Immunology Group, Laboratory of Animal Products Chemistry; JapónFil: Suda, Yoshihito. Miyagi University. Department of Food, Agriculture, and Environment; JapónFil: Aso, Hisashi. Tohoku University. Graduate School of Agricultural Science. Cell Biology Laboratory; JapónFil: Egusa, Shintaro. Marusan-Ai Co. Research & Development Division; JapónFil: Mishima, Takashi. Mie University. Graduate School of Regional Innovation Studies; JapónFil: Salas-Burgos, Alexis. University of Concepcion. Departmento de Farmacología; ChileFil: Takahashi, Hideki. Tohoku University. Graduate School of Agricultural Science. Laboratory of Plant Pathology; JapónFil: Villena, Julio Cesar. Tohoku University. Graduate School of Agricultural Science. Food and Feed Immunology Group, Laboratory of Animal Products Chemistry; Japón. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Centro de Referencia para Lactobacilos; ArgentinaFil: Kitazawa, Haruki. Tohoku University. Graduate School of Agricultural Science. Food and Feed Immunology Group, Laboratory of Animal Products Chemistry; Japó
    corecore