211 research outputs found

    The Neutral Self-Assembling Peptide Hydrogel SPG-178 as a Topical Hemostatic Agent

    Get PDF
    Conventional self-assembling peptide hydrogels are effective as topical hemostatic agents. However, there is a possibility to harm living tissues due to their low pH. The aim of the present study was to demonstrate the efficacy of SPG-178, a neutral self-assembling peptide hydrogel, as a topical hemostatic agent. First, we measured the bleeding duration of incisions made on rat livers after application of SPG-178 (1.0% w/v), SPG-178 (1.5% w/v), RADA16 (1.0% w/v), and saline (n = 12/group). Second, we observed the bleeding surfaces by transmission electron microscopy immediately after hemostasis. Third, we measured the elastic and viscous responses (G′ and G″, respectively) of the hydrogels using a rheometer. Our results showed that bleeding duration was significantly shorter in the SPG-178 group than in the RADA16 group and that there were no significant differences in transmission electron microscopy findings between the groups. The greater the G′ value of a hydrogel, the shorter was the bleeding duration. We concluded that SPG-178 is more effective and has several advantages: it is non-biological, transparent, nonadherent, and neutral and can be sterilized by autoclaving

    Low-Temperature Luminescence Spectroscopy of Violet Sr-Al-O:Eu2+ Phosphor Particles

    Get PDF
    Violet Sr–Al–O:Eu2+ phosphor particles were synthesized from a metal–ethylenediaminetetraacetic acid (EDTA) solution of Sr, Al, Eu, and particulate alumina via spray drying and sintering in a reducing atmosphere. The crystal structures and emission properties at 85–300 K were investigated. The composition of the violet Sr–Al–O:Eu2+ phosphor particles was determined from various Sr–Al–O:Eu2+ phosphors by their emission properties' dependence on temperature. The highly crystalline SrAl12O19:Eu2+ emission phases were confirmed by their crystallite sizes and the activation energies for the 4f5d–8S7/2 transition of the Eu2+ ion. These results showed that the material identification for the violet Sr–Al–O:Eu2+ phosphor was accomplished by the low-temperature luminescence measurements

    Synthesis of Y2O3 Films by Spray Coating with Milled EDTA ・Y・H Complexes

    Get PDF
    Yttrium oxide (Y2O3) films have been successfully deposited with yttrium-ethylenediaminetetraacetic acid (EDTA・Y・H) complexes prepared by various milling techniques. The effects of the properties of the EDTA・Y・H complex on the properties of the deposited Y2O3 films have been analyzed. Seven different types of the raw EDTA・Y・H complexes were prepared by various commercial milling techniques such as ball milling, hammer milling, commercial milling, and mortar milling. The milled EDTA・Y・H complexes exhibited various particle sizes and distributions, depending on the milling method. Furthermore, we analyzed the crystal structure, morphology and elemental distribution profile of the metal oxide films deposited on stainless steel substrate with the milled EDTA・Y・H complexes. Depending on the milling technique, the flow properties of the raw powders differed. The X-ray diffraction pattern of all the samples revealed the formation of Y2O3 crystalline phase, irrespective of the milling technique. Of all the different milling techniques, the hammer milling technique is considered suitable for fabricating dense Y2O3 films

    Extended Clausius Relation and Entropy for Nonequilibrium Steady States in Heat Conducting Quantum Systems

    Full text link
    Recently, in their attempt to construct steady state thermodynamics (SST), Komatsu, Nakagwa, Sasa, and Tasaki found an extension of the Clausius relation to nonequilibrium steady states in classical stochastic processes. Here we derive a quantum mechanical version of the extended Clausius relation. We consider a small system of interest attached to large systems which play the role of heat baths. By only using the genuine quantum dynamics, we realize a heat conducting nonequilibrium steady state in the small system. We study the response of the steady state when the parameters of the system are changed abruptly, and show that the extended Clausius relation, in which "heat" is replaced by the "excess heat", is valid when the temperature difference is small. Moreover we show that the entropy that appears in the relation is similar to von Neumann entropy but has an extra symmetrization with respect to time-reversal. We believe that the present work opens a new possibility in the study of nonequilibrium phenomena in quantum systems, and also confirms the robustness of the approach by Komtatsu et al.Comment: 19 pages, 2 figure

    Oxidation behaviour of lattice oxygen in Li-rich manganese-based layered oxide studied by hard X-ray photoelectron spectroscopy

    Get PDF
    The oxidation/reduction behaviours of lattice oxygen and transition metals in a Li-rich manganese-based layered oxide Li[Li0.25Ni0.20Mn0.55]O1.93 are investigated by using hard X-ray photoelectron spectroscopy (HAX-PES). By making use of its deeper probing depth rather than in-house XPS analyses, we clearly confirm the formation of O- ions as bulk oxygen species in the active material. They are formed on the 1st charging process as a charge compensation mechanism for delithiation and decrease on discharging. In particular, the cation-anion dual charge compensation involving Ni and O ions is suggested during the voltage slope region of the charging process. The Ni ions in the material are considered to increase the capacity delivered by a reversible anion redox reaction with the suppression of O2 gas release. On the other hand, we found structural deterioration in the cycled material. The O- species are still observed but are electrochemically inactive during the 5th charge-discharge cycle. Also, the oxidation state of Ni ions is divalent and inactive, although that of Mn ions changes reversibly. We believe that this is associated with the structural rearrangement occurring after the activation process during the 1st charging, leading to the formation of spinel- or rocksalt-like domains over the sub-surface region of the particles

    WRN participates in translesion synthesis pathway through interaction with NBS1.

    Get PDF
    Werner syndrome (WS), caused by mutation of the WRN gene, is an autosomal recessive disorder associated with premature aging and predisposition to cancer. WRN belongs to the RecQ DNA helicase family, members of which play a role in maintaining genomic stability. Here, we demonstrate that WRN rapidly forms discrete nuclear foci in an NBS1-dependent manner following DNA damage. NBS1 physically interacts with WRN through its FHA domain, which interaction is important for the phosphorylation of WRN. WRN subsequently forms DNA damage-dependent foci during the S phase, but not in the G1 phase. WS cells exhibit an increase in spontaneous focus formation of poleta and Rad18, which are important for translesion synthesis (TLS). WRN also interacts with PCNA in the absence of DNA damage, but DNA damage induces the dissociation of PCNA from WRN, leading to the ubiquitination of PCNA, which is essential for TLS. This dissociation correlates with ATM/NBS1-dependent degradation of WRN. Moreover, WS cells show constitutive ubiquitination of PCNA and interaction between PCNA and Rad18 E3 ligase in the absence of DNA damage. Taken together, these results indicate that WRN participates in the TLS pathway to prevent genomic instability in an ATM/NBS1-dependent manner

    Atg9a deficiency causes axon-specific lesions including neuronal circuit dysgenesis

    Get PDF
    Conditional knockout mice for Atg9a, specifically in brain tissue, were generated to understand the roles of ATG9A in the neural tissue cells. The mice were born normally, but half of them died within one wk, and none lived beyond 4 wk of age. SQSTM1/p62 and NBR1, receptor proteins for selective autophagy, together with ubiquitin, accumulated in Atg9a-deficient neurosoma at postnatal d 15 (P15), indicating an inhibition of autophagy, whereas these proteins were significantly decreased at P28, as evidenced by immunohistochemistry, electron microscopy and western blot. Conversely, degenerative changes such as spongiosis of nerve fiber tracts proceeded in axons and their terminals that were occupied with aberrant membrane structures and amorphous materials at P28, although no clear-cut degenerative change was detected in neuronal cell bodies. Different from autophagy, diffusion tensor magnetic resonance imaging and histological observations revealed Atg9a-deficiency-induced dysgenesis of the corpus callosum and anterior commissure. As for the neurite extensions of primary cultured neurons, the neurite outgrowth after 3 d culturing was significantly impaired in primary neurons from atg9a-KO mouse brains, but not in those from atg7-KO and atg16l1-KO brains. Moreover, this tendency was also confirmed in Atg9a-knockdown neurons under an atg7-KO background, indicating the role of ATG9A in the regulation of neurite outgrowth that is independent of autophagy. These results suggest that Atg9a deficiency causes progressive degeneration in the axons and their terminals, but not in neuronal cell bodies, where the degradations of SQSTM1/p62 and NBR1 were insufficiently suppressed. Moreover, the deletion of Atg9a impaired nerve fiber tract formation

    Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice

    Get PDF
    Autophagy is a membrane-trafficking mechanism that delivers cytoplasmic constituents into the lysosome/vacuole for bulk protein degradation. This mechanism is involved in the preservation of nutrients under starvation condition as well as the normal turnover of cytoplasmic component. Aberrant autophagy has been reported in several neurodegenerative disorders, hepatitis, and myopathies. Here, we generated conditional knockout mice of Atg7, an essential gene for autophagy in yeast. Atg7 was essential for ATG conjugation systems and autophagosome formation, amino acid supply in neonates, and starvation-induced bulk degradation of proteins and organelles in mice. Furthermore, Atg7 deficiency led to multiple cellular abnormalities, such as appearance of concentric membranous structure and deformed mitochondria, and accumulation of ubiquitin-positive aggregates. Our results indicate the important role of autophagy in starvation response and the quality control of proteins and organelles in quiescent cells
    corecore