47 research outputs found

    Carfilzomib and dexamethasone versus bortezomib and dexamethasone for patients with relapsed or refractory multiple myeloma (ENDEAVOR): And randomised, phase 3, open-label, multicentre study

    Get PDF
    Background: Bortezomib with dexamethasone is a standard treatment option for relapsed or refractory multiple myeloma. Carfilzomib with dexamethasone has shown promising activity in patients in this disease setting. The aim of this study was to compare the combination of carfilzomib and dexamethasone with bortezomib and dexamethasone in patients with relapsed or refractory multiple myeloma. Methods: In this randomised, phase 3, open-label, multicentre study, patients with relapsed or refractory multiple myeloma who had one to three previous treatments were randomly assigned (1:1) using a blocked randomisation scheme (block size of four) to receive carfilzomib with dexamethasone (carfilzomib group) or bortezomib with dexamethasone (bortezomib group). Randomisation was stratified by previous proteasome inhibitor therapy, previous lines of treatment, International Staging System stage, and planned route of bortezomib administration if randomly assigned to bortezomib with dexamethasone. Patients received treatment until progression with carfilzomib (20 mg/m2 on days 1 and 2 of cycle 1; 56 mg/m2 thereafter; 30 min intravenous infusion) and dexamethasone (20 mg oral or intravenous infusion) or bortezomib (1·3 mg/m2; intravenous bolus or subcutaneous injection) and dexamethasone (20 mg oral or intravenous infusion). The primary endpoint was progression-free survival in the intention-to-treat population. All participants who received at least one dose of study drug were included in the safety analyses. The study is ongoing but not enrolling participants; results for the interim analysis of the primary endpoint are presented. The trial is registered at ClinicalTrials.gov, number NCT01568866. Findings: Between June 20, 2012, and June 30, 2014, 929 patients were randomly assigned (464 to the carfilzomib group; 465 to the bortezomib group). Median follow-up was 11·9 months (IQR 9·3-16·1) in the carfilzomib group and 11·1 months (8·2-14·3) in the bortezomib group. Median progression-free survival was 18·7 months (95% CI 15·6-not estimable) in the carfilzomib group versus 9·4 months (8·4-10·4) in the bortezomib group at a preplanned interim analysis (hazard ratio [HR] 0·53 [95% CI 0·44-0·65]; p<0·0001). On-study death due to adverse events occurred in 18 (4%) of 464 patients in the carfilzomib group and in 16 (3%) of 465 patients in the bortezomib group. Serious adverse events were reported in 224 (48%) of 463 patients in the carfilzomib group and in 162 (36%) of 456 patients in the bortezomib group. The most frequent grade 3 or higher adverse events were anaemia (67 [14%] of 463 patients in the carfilzomib group vs 45 [10%] of 456 patients in the bortezomib group), hypertension (41 [9%] vs 12 [3%]), thrombocytopenia (39 [8%] vs 43 [9%]), and pneumonia (32 [7%] vs 36 [8%]). Interpretation: For patients with relapsed or refractory multiple myeloma, carfilzomib with dexamethasone could be considered in cases in which bortezomib with dexamethasone is a potential treatment option. Funding: Onyx Pharmaceuticals, Inc., an Amgen subsidiary

    Posters display III clinical outcome and PET

    Get PDF

    Transplant results in adults with Fanconi anaemia

    Get PDF

    Addition of elotuzumab to lenalidomide and dexamethasone for patients with newly diagnosed, transplantation ineligible multiple myeloma (ELOQUENT-1): an open-label, multicentre, randomised, phase 3 trial

    Get PDF

    Controlled battery charger for electric vehicles

    No full text
    Due to rising fuel consumption, price of CO2 emissions and growing urban air pollution, the global interest of the automobile industry, politics and scientists in electric mobility is increasing in the recent years worldwide. Thus, future challenges will be the integration of electric vehicles in distribution networks under the scope of balancing multiple charging processes while, at the same time, increasing dispersed generation. The development of a controlled battery charger for traction batteries aims to reduce the peak load and to shift energy demand

    Power quality measurements of electric vehicles in the low voltage power grid

    No full text
    In this contribution power quality measurements of electric vehicles (EVs) will be presented. In the coming years EVs will become a more relevant asset in the power system. Due to infrastructural reasons and typical usage the EVs will be mainly connected to the low voltage power grid. That includes charging and - in case of vehicle-to-grid concepts - discharging processes with different power levels. The investigation of different kinds of EVs considers voltage drops, harmonics and power factors that allow for scaling up the impact on the power system. To interpret the results common standards and technical requirements are taken into account that describes the connection of loads as well as generators to the grid
    corecore