21 research outputs found

    Enterprise Education Competitions: A Theoretically Flawed Intervention?

    Get PDF
    The demand for including enterprise in the education system, at all levels and for all pupils is now a global phenomenon. Within this context, the use of competitions and competitive learning activities is presented as a popular and effective vehicle for learning. The purpose of this chapter is to illustrate how a realist method of enquiry – which utilises theory as the unit of analysis – can shed new light on the assumed and unintended outcomes of enterprise education competitions. The case developed here is that there are inherent flaws in assuming that competitions will ‘work’ in the ways set out in policy and guidance. Some of the most prevalent stated outcomes – that competitions will motivate and reward young people, that they will enable the development of entrepreneurial skills, and that learners will be inspired by their peers – are challenged by theory from psychology and education. The issue at stake is that the expansion of enterprise education policy into primary and secondary education increases the likelihood that more learners will be sheep dipped in competitions, and competitive activities, without a clear recognition of the potential unintended effects. In this chapter, we employ a realist-informed approach to critically evaluate the theoretical basis that underpins the use of competitions and competitive learning activities in school-based enterprise education. We believe that our findings and subsequent recommendations will provide those who promote and practice the use of competitions with a richer, more sophisticated picture of the potential flaws within such activities.Peer reviewedFinal Published versio

    Disclosing the thermal reactions of aliphatic amines in the presence of TiO2 nanoparticles by multi-shot analytical pyrolysis

    No full text
    Analytical pyrolysis is a powerful tool to study the thermal behaviour of organic compounds, but relatively little information is available on the pyrolysis of amines, especially when bound to inorganic systems. In this study, we analysed aliphatic amines (propylamine, dipropylamine, tripropylamine, and tert-butylamine), both as pure compounds and bound to titania nanoparticles, using multi-shot analytical pyrolysis-gas chromatography coupled to mass spectrometry (Py-GC–MS) with a liquid nitrogen cryo-trap system. Desorption of amines was observed at 260 °C, while pyrolysis reactions were mostly observed at 600 °C. Pure amines underwent intermolecular reactions, generating heavier nitrogen-containing compounds. Conversely, amines bound to titania nanoparticles underwent loss of ammonia and hydrogen, and both inter- and intramolecular couplings generate unsaturated hydrocarbons and aromatics. Differences in the pyrolysis mechanisms were attributed to the catalytic effect of the nanoparticles. The present work provides fundamental information on the pyrolytic behaviour of aliphatic amines and on the catalytic effect of titania nanoparticles
    corecore