2,409 research outputs found

    Optomechanical quantum information processing with photons and phonons

    Get PDF
    We describe how strong resonant interactions in multimode optomechanical systems can be used to induce controlled nonlinear couplings between single photons and phonons. Combined with linear mapping schemes between photons and phonons, these techniques provide a universal building block for various classical and quantum information processing applications. Our approach is especially suited for nano-optomechanical devices, where strong optomechanical interactions on a single photon level are within experimental reach.Comment: 8 pages, 5 figure

    Tracing magnetic separators and their dependence on IMF clock angle in global magnetospheric simulations

    Get PDF
    A new, efficient, and highly accurate method for tracing magnetic separators in global magnetospheric simulations with arbitrary clock angle is presented. The technique is to begin at a magnetic null and iteratively march along the separator by finding where four magnetic topologies meet on a spherical surface. The technique is verified using exact solutions for separators resulting from an analytic magnetic field model that superposes dipolar and uniform magnetic fields. Global resistive magnetohydrodynamic simulations are performed using the three-dimensional BATS-R-US code with a uniform resistivity, in eight distinct simulations with interplanetary magnetic field (IMF) clock angles ranging from 0 (parallel) to 180 degrees (anti-parallel). Magnetic nulls and separators are found in the simulations, and it is shown that separators traced here are accurate for any clock angle, unlike the last closed field line on the Sun-Earth line that fails for southward IMF. Trends in magnetic null locations and the structure of magnetic separators as a function of clock angle are presented and compared with those from the analytic field model. There are many qualitative similarities between the two models, but quantitative differences are also noted. Dependence on solar wind density is briefly investigated.Comment: 10 pages, 10 figures, Presented at 2012 AGU Fall Meeting and 2013 Geospace Environment Modeling (GEM) Worksho

    The local dayside reconnection rate for oblique interplanetary magnetic fields

    Get PDF
    We present an analysis of local properties of magnetic reconnection at the dayside magnetopause for various interplanetary magnetic field (IMF) orientations in global magnetospheric simulations. This has heretofore not been practical because it is difficult to locate where reconnection occurs for oblique IMF, but new techniques make this possible. The approach is to identify magnetic separators, the curves separating four regions of differing magnetic topology, which map the reconnection X-line. The electric field parallel to the X-line is the local reconnection rate. We compare results to a simple model of local two-dimensional asymmetric reconnection. To do so, we find the plasma parameters that locally drive reconnection in the magnetosheath and magnetosphere in planes perpendicular to the X-line at a large number of points along the X-line. The global magnetohydrodynamic simulations are from the three-dimensional Block-Adaptive, Tree Solarwind Roe-type Upwind Scheme (BATS-R-US) code with a uniform resistivity, although the techniques described here are extensible to any global magnetospheric simulation model. We find that the predicted local reconnection rates scale well with the measured values for all simulations, being nearly exact for due southward IMF. However, the absolute predictions differ by an undetermined constant of proportionality, whose magnitude increases as the IMF clock angle changes from southward to northward. We also show similar scaling agreement in a simulation with oblique southward IMF and a dipole tilt. The present results will be an important component of a full understanding of the local and global properties of dayside reconnection

    Asymmetric magnetic reconnection with a flow shear and applications to the magnetopause

    Get PDF
    We perform a theoretical and numerical study of anti-parallel 2D magnetic reconnection with asymmetries in the density and reconnecting magnetic field strength in addition to a bulk flow shear across the reconnection site in the plane of the reconnecting fields, which commonly occurs at planetary magnetospheres. We predict the speed at which an isolated X-line is convected by the flow, the reconnection rate, and the critical flow speed at which reconnection no longer takes place for arbitrary reconnecting magnetic field strengths, densities, and upstream flow speeds, and confirm the results with two-fluid numerical simulations. The predictions and simulation results counter the prevailing model of reconnection at Earth's dayside magnetopause which says reconnection occurs with a stationary X-line for sub-Alfvenic magnetosheath flow, reconnection occurs but the X-line convects for magnetosheath flows between the Alfven speed and double the Alfven speed, and reconnection does not occur for magnetosheath flows greater than double the Alfven speed. We find that X-line motion is governed by momentum conservation from the upstream flows, which are weighted differently in asymmetric systems, so the X-line convects for generic conditions including sub-Alfvenic upstream speeds. For the reconnection rate, while the cutoff condition for symmetric reconnection is that the difference in flows on the two sides of the reconnection site is twice the Alfven speed, we find asymmetries cause the cutoff speed for asymmetric reconnection to be higher than twice the asymmetric form of the Alfven speed. The results compare favorably with an observation of reconnection at Earth's polar cusps during a period of northward interplanetary magnetic field, where reconnection occurs despite the magnetosheath flow speed being more than twice the magnetosheath Alfven speed, the previously proposed suppression condition.Comment: 46 pages, 7 figures, abstract abridged here, accepted to Journal of Geophysical Research - Space Physic

    Symmetry, singularities and integrability in complex dynamics III: approximate symmetries and invariants

    Full text link
    The different natures of approximate symmetries and their corresponding first integrals/invariants are delineated in the contexts of both Lie symmetries of ordinary differential equations and Noether symmetries of the Action Integral. Particular note is taken of the effect of taking higher orders of the perturbation parameter. Approximate symmetries of approximate first integrals/invariants and the problems of calculating them using the Lie method are considered
    • …
    corecore