24 research outputs found

    Homeostatic maintenance of the lymphatic vasculature

    No full text
    The lymphatic vasculature is emerging as a multifaceted regulator of tissue homeostasis and regeneration. Lymphatic vessels drain fluid, macromolecules, and immune cells from peripheral tissues to lymph nodes (LNs) and the systemic circulation. Their recently uncovered functions extend beyond drainage and include direct modulation of adaptive immunity and paracrine regulation of organ growth. The developmental mechanisms controlling lymphatic vessel growth have been described with increasing precision. It is less clear how the essential functional features of lymphatic vessels are established and maintained. We discuss the mechanisms that maintain lymphatic vessel integrity in adult tissues and control vessel repair and regeneration. This knowledge is crucial for understanding the pathological vessel changes that contribute to disease, and provides an opportunity for therapy development

    Epigenetic Regulation of Endothelial Cell Lineages During Zebrafish Development-New Insights From Technical Advances

    No full text
    Epigenetic regulation is integral in orchestrating the spatiotemporal regulation of gene expression which underlies tissue development. The emergence of new tools to assess genome-wide epigenetic modifications has enabled significant advances in the field of vascular biology in zebrafish. Zebrafish represents a powerful model to investigate the activity of cis-regulatory elements in vivo by combining technologies such as ATAC-seq, ChIP-seq and CUT&Tag with the generation of transgenic lines and live imaging to validate the activity of these regulatory elements. Recently, this approach led to the identification and characterization of key enhancers of important vascular genes, such as gata2a, notch1b and dll4. In this review we will discuss how the latest technologies in epigenetics are being used in the zebrafish to determine chromatin states and assess the function of the cis-regulatory sequences that shape the zebrafish vascular network

    Real-time evaluation of glioblastoma growth in patient-specific zebrafish xenografts

    No full text
    Background: Patient-derived xenograft (PDX) models of glioblastoma (GBM) are a central tool for neuro-oncology research and drug development, enabling the detection of patient-specific differences in growth, and in vivo drug response. However, existing PDX models are not well suited for large-scale or automated studies. Thus, here, we investigate if a fast zebrafish-based PDX model, supported by longitudinal, AI-driven image analysis, can recapitulate key aspects of glioblastoma growth and enable case-comparative drug testing. Methods: We engrafted 11 GFP-tagged patient-derived GBM IDH wild-type cell cultures (PDCs) into 1-day-old zebrafish embryos, and monitored fish with 96-well live microscopy and convolutional neural network analysis. Using light-sheet imaging of whole embryos, we analyzed further the invasive growth of tumor cells. Results: Our pipeline enables automatic and robust longitudinal observation of tumor growth and survival of individual fish. The 11 PDCs expressed growth, invasion and survival heterogeneity, and tumor initiation correlated strongly with matched mouse PDX counterparts (Spearman R = 0.89, p < 0.001). Three PDCs showed a high degree of association between grafted tumor cells and host blood vessels, suggesting a perivascular invasion phenotype. In vivo evaluation of the drug marizomib, currently in clinical trials for GBM, showed an effect on fish survival corresponding to PDC in vitro and in vivo marizomib sensitivity. Conclusions: Zebrafish xenografts of GBM, monitored by AI methods in an automated process, present a scalable alternative to mouse xenograft models for the study of glioblastoma tumor initiation, growth, and invasion, applicable to patient-specific drug evaluation

    Regulation of alternative polyadenylation by genomic imprinting

    Get PDF
    Maternally and paternally derived alleles can utilize different promoters, but allele-specific differences in cotranscriptional processes have not been reported. We show that alternative polyadenylation sites at a novel murine imprinted gene (H13) are utilized in an allele-specific manner. A differentially methylated CpG island separates polyA sites utilized on maternal and paternal alleles, and contains an internal promoter. Two genetic systems show that alleles lacking methylation generate truncated H13 transcripts that undergo internal polyadenylation. On methylated alleles, the internal promoter is inactive and elongation proceeds to downstream polyadenylation sites. This demonstrates that epigenetic modifications can influence utilization of alternative polyadenylation sites

    MAFB modulates the maturation of lymphatic vascular networks in mice

    No full text
    Background: Lymphatic vessels play key roles in tissue fluid homeostasis, immune cell trafficking and in diverse disease settings. Lymphangiogenesis requires lymphatic endothelial cell (LEC) differentiation, proliferation, migration, and co‐ordinated network formation, yet the transcriptional regulators underpinning these processes remain to be fully understood. The transcription factor MAFB was recently identified as essential for lymphangiogenesis in zebrafish and in cultured human LECs. MAFB is activated in response to VEGFC‐VEGFR3 signaling and acts as a downstream effector. However, it remains unclear if the role of MAFB in lymphatic development is conserved in the mammalian embryo. Results: We generated a Mafb loss‐of‐function mouse using CRISPR/Cas9 gene editing. Mafb mutant mice presented with perinatal lethality associated with cyanosis. We identify a role for MAFB in modifying lymphatic network morphogenesis in the developing dermis, as well as developing and postnatal diaphragm. Furthermore, mutant vessels displayed excessive smooth muscle cell coverage, suggestive of a defect in the maturation of lymphatic networks. Conclusions: This work confirms a conserved role for MAFB in murine lymphatics that is subtle and modulatory and may suggest redundancy in MAF family transcription factors during lymphangiogenesis

    Vegfc Regulates Bipotential Precursor Division and Prox1 Expression to Promote Lymphatic Identity in Zebrafish

    Get PDF
    Lymphatic vessels arise chiefly from preexisting embryonic veins. Genetic regulators of lymphatic fate are known, but how dynamic cellular changes contribute during the acquisition of lymphatic identity is not understood. We report the visualization of zebrafish lymphatic precursor cell dynamics during fate restriction. In the cardinal vein, cellular commitment is linked with the division of bipotential Prox1-positive precursor cells, which occurs immediately prior to sprouting angiogenesis. Following precursor division, identities are established asymmetrically in daughter cells; one daughter cell becomes lymphatic and progressively upregulates Prox1, and the other downregulates Prox1 and remains in the vein. Vegfc drives cell division and Prox1 expression in lymphatic daughter cells, coupling signaling dynamics with daughter cell fate restriction and precursor division

    mafba and mafbb differentially regulate lymphatic endothelial cell migration in topographically distinct manners

    No full text
    Lymphangiogenesis, formation of lymphatic vessels from pre-existing vessels, is a dynamic process that requires cell migration. Regardless of location, migrating lymphatic endothelial cell (LEC) progenitors probe their surroundings to form the lymphatic network. Lymphatic-development regulation requires the transcription factor MAFB in different species. Zebrafish Mafba, expressed in LEC progenitors, is essential for their migration in the trunk. However, the transcriptional mechanism that orchestrates LEC migration in different lymphatic endothelial beds remains elusive. Here, we uncover topographically different requirements of the two paralogs, Mafba and Mafbb, for LEC migration. Both mafba and mafbb are necessary for facial lymphatic development, but mafbb is dispensable for trunk lymphatic development. On the molecular level, we demonstrate a regulatory network where Vegfc-Vegfd-SoxF-Mafba-Mafbb is essential in facial lymphangiogenesis. We identify that mafba and mafbb tune the directionality of LEC migration and vessel morphogenesis that is ultimately necessary for lymphatic function
    corecore