10 research outputs found

    Emitter-Metasurface Interface for Manipulating Emission Characteristics of Quantum Defects

    Get PDF
    We demonstrate a chip-scale quantum emitter-metamaterial device that emits highly directional photons. Our device opens the door for quantum imaging of yveak sources by adding photon(s) to manipulate the photon statistics for improved signal-to-noise ratio

    Emitter-Metasurface Interface for Manipulating Emission Characteristics of Quantum Defects

    Get PDF
    We demonstrate a chip-scale quantum emitter-metamaterial device that emits highly directional photons. Our device opens the door for quantum imaging of yveak sources by adding photon(s) to manipulate the photon statistics for improved signal-to-noise ratio

    Enhanced Thermal Object Imaging by Photon Addition or Subtraction

    Get PDF
    Long-baseline interferometry (LBI) is used to reconstruct the image of faint thermal objects. The image quality, for a given exposure time, is in general limited by a low signal-to-noise ratio (SNR). We show theoretically that a significant increase of the SNR, in a LBI, is possible by adding or subtracting photons to the thermal beam. At low photon counts, photon addition-subtraction technology strongly enhances the image quality. We have experimentally realized a nondeterministic physical protocol for photon subtraction. Our theoretical predictions are supported by experimental results.Comment: 4 pages, 5 figure

    EC-GMR Data Analysis for Inspection of Multilayer Airframe Structures

    No full text
    Eddy-current testing (ECT) is widely used in inspection of multilayer aircraft skin structures for the detection of cracks under fasteners (CUF). Detection of deep hidden CUF poses a major challenge in traditional ECT techniques largely because the weak eddy-current signal due to a subsurface crack is dominated by the strong signal from the aluminum or steel fastener. Giant magnetoresistive (GMR) sensors are finding increasing applications in directly measuring weak magnetic fields associated with induced eddy currents. The measured flux image at a fastener site is in general symmetric and an asymmetry is introduced by the presence of a subsurface crack, which is used for defect detection. This paper presents novel methods that employ the resident phase information, for improving detection probability of GMR signal analysis. Using computational model, the effectiveness of the proposed methods for enhancing detection of CUF is investigated. Results demonstrating the potential of these techniques for detection of second layer CUF are presented
    corecore