9 research outputs found

    Rogue waves and mode locking driven by Vector Resonance Multimode instability

    Get PDF
    Modulation instabilities discovered more than fifty and hundred fifty years ago created since then a framework for study complexity of different wave phenomena including turbulence and rogue waves. Using Erbium-doped fiber laser without any previously studied mode-locking mechanisms, here for the first time we demonstrate both experimentally and theoretically a new type of modulation instability, namely Vector Resonance Multimode Instability, leading to tunability of the laser dynamics from turbulence including rogue waves to the stable pulse train similar to the laser mode-locking regime

    Temporal scaling of optical rogue waves in unidirectional ring fiber laser

    Get PDF
    A fiber mode-lock laser allows generation of the optical rogue wave (ORW) at different time scales. The criteria for distinguishing between them is a comparison of the event lifetime with the main characteristic time of the system. The characteristic time can be estimated from the decay of an autocorrelation function (AF). Thus, in comparison with AF characteristic time, fast optical rogue wave (FORW) events have duration less than the AF decay time and it appeared due to pulse-pulse interaction and nonlinear pulses dynamics. While slow optical rogue wave (SORW) have a duration much more longer than the decay time of the AF which it papered due to hopping between different attractors. Switching between regimes can be managed by change the artificial birefringence that induced in a laser cavity. For understanding the role playing by the periodical amplification and the resonator, we have performed an unidirectional fiber laser experiments without a saturable absorber. This laser experiment allowed to generate of most of the RW patterns which were either observed experimentally or predicted theoretically. In this way, we have observed the generation of an FORW along with SORW under similar conditions. Most of the patterns were found to be mutually exclusive which means that only one RW mechanism was realized in each regime of generation

    Bright and dark vector rogue waves

    Get PDF
    For an Erbium-doped mode locked fibre laser, we demonstrate experimentally a new type of vector rogue waves (RWs) emergence of which is caused by the coherent coupling of the orthogonal states of polarisation (SOPs). Unlike weak interaction between neighbouring dissipative solitons for the soliton rain, this creates a new type of the energy landscape where the interaction of the orthogonal SOPs leads to polarisation trapping or escapes from the trapping triggered by polarisation instabilities and so results in the pulse dynamics satisfying criteria of the 'dark' and 'bright' RWs. The obtained results, apart from the fundamental interest, can provide a base for development of the rogue waves mitigation techniques in the context of the applications in photonics and beyond

    Toward a new generation of photonic humidity sensors

    Get PDF
    This review offers new perspectives on the subject and highlights an area in need of further research. It includes an analysis of current scientific literature mainly covering the last decade and examines the trends in the development of electronic, acoustic and optical-fiber humidity sensors over this period. The major findings indicate that a new generation of sensor technology based on optical fibers is emerging. The current trends suggest that electronic humidity sensors could soon be replaced by sensors that are based on photonic structures. Recent scientific advances are expected to allow dedicated systems to avoid the relatively high price of interrogation modules that is currently a major disadvantage of fiber-based sensors

    Bright-dark rogue wave in mode-locked fibre laser

    Get PDF
    Rogue waves (RWs) are statistically rare localized waves with high amplitude that suddenly appear and disappear in oceans, water tanks, and optical systems [1]. The investigation of these events in optics, optical rogue waves, is of interest for both fundamental research and applied science. Recently, we have shown that the adjustment of the incavity birefringence and pump polarization leads to emerge optical RW events [2-4]. Here, we report the first experimental observation of vector bright-dark RWs in an erbium–doped stretched pulse mode-locked fiber laser. The change of induced in-cavity birefringence provides an opportunity to observe RW events at pump power is a little higher than the lasing threshold. Polarization instabilities in the laser cavity result in the coupling between two orthogonal linearly polarized components leading to the emergence of bright-dark RWs. The observed clusters belongs to the class of slow optical RWs because their lifetime is of order of a thousand of laser cavity roundtrip periods

    Smart Q-switching for single-pulse generation in an erbium-doped fiber laser

    Get PDF
    In this paper, we report an active Q-switching of an erbiumdoped fiber laser with special modulation functions and novel laser geometry. We experimentally demonstrate that using such a smart Q-switch approach, Q-switch ripple-free pulses with Gaussian-like shape and 17.3 ns width can be easily obtained. The idea behind the smart Q-switch is to suppress one of two laser waves contra-propagating along the fiber cavity, which arises after Q-cell opening, and to eliminate the minor sub-pulses

    Ultrafast rogue wave patterns in fiber lasers

    Get PDF
    Fiber lasers are convenient for studying extreme and rare events, such as rogue waves, thanks to the lasers’ fast dynamics. Indeed, several types of rogue wave patterns were observed in fiber lasers at different time-scales: single peak, twin peak, and triple peak. We measured the statistics of these ultrafast rogue wave patterns with a time lens and developed a numerical model proving that the patterns of the ultrafast rogue waves were generated by the non-instantaneous relaxation of the saturable absorber together with the polarization mode dispersion of the cavity. Our results indicate that the dynamics of the saturable absorber is directly related to the dynamics of ultrafast extreme events in lasers

    The picosecond structure of ultra-fast rogue waves

    Get PDF
    We investigated ultrafast rogue waves in fiber lasers and found three different patterns of rogue waves: single- peaks, twin-peaks, and triple-peaks. The statistics of the different patterns as a function of the pump power of the laser reveals that the probability for all rogue waves patterns increase close to the laser threshold. We developed a numerical model which prove that the ultrafast rogue waves patterns result from both the polarization mode dispersion in the fiber and the non-instantaneous nature of the saturable absorber. This discovery reveals that there are three different types of rogue waves in fiber lasers: slow, fast, and ultrafast, which relate to three different time-scales and are governed by three different sets of equations: the laser rate equations, the nonlinear Schrodinger equation, and the saturable absorber equations, accordingly. This discovery is highly important for analyzing rogue waves and other extreme events in fiber lasers and can lead to realizing types of rogue waves which were not possible so far such as triangular rogue waves
    corecore