5 research outputs found

    A simple fluorescent labeling technique to study virus adsorption in Newcastle disease virus infected cells

    No full text
    The present study demonstrates that the fluorescent general membrane dyes PKH67 and PKH26 are suitable to label Newcastle disease virus, an enveloped virus belonging to the family of paramyxoviridae. Adsorption of the labeled virus particles was tracked, visualized and quantitated using confocal laser scanning microscopy. The specificity of PKH-labeling was determined by colocalization analysis of the PKH signal with NDV-specific immunolabeling, and by using mock-infected controls and infection with detergent-pretreated labeled virus particles. The infectivity of the NDV particles was not affected by the labeling procedure as indicated by the results of a cytotoxicity ATP assay, an apoptosis assay and detection of virus-specific RNA and protein by qPCR and Western blotting, respectively, in cells infected with PKH-labeled and unlabeled virus particles. This technique can be used as an inexpensive, sensitive and rapid alternative method in the analysis of adsorption and internalization of enveloped viruses by the infected cells

    A collaborative effort towards the accurate prediction of turbulent flow and heat transfer in low-Prandtl number fluids

    No full text
    This article reports the experimental and DNS database that has been generated, within the framework of the EU SESAME and MYRTE projects, for various low-Prandtl flow configurations in different flow regimes. This includes three experiments: confined and unconfined backward facing steps with low-Prandtl fluids, and a forced convection planar jet case with two different Prandtl fluids. In terms of numerical data, seven different flow configurations are considered: a wall-bounded mixed convection flow at low-Prandtl number with varying Richardson number (Ri) values; a wall-bounded mixed and forced convection flow in a bare rod bundle configuration for two different Reynolds numbers; a forced convection confined backward facing step (BFS) with conjugate heat transfer; a forced convection impinging jet for three different Prandtl fluids corresponding to two different Reynolds numbers of the fully developed planar turbulent jet; a mixed-convection cold-hot-cold triple jet configuration corresponding to Ri=0.25; an unconfined free shear layer for three different Prandtl fluids; and a forced convection infinite wire-wrapped fuel assembly. This wide range of reference data is used to evaluate, validate and/or further develop different turbulent heat flux modelling approaches, namely simple gradient diffusion hypothesis based on constant and variable turbulent Prandtl number; explicit and implicit algebraic heat flux models; and a second order turbulent heat flux model. Lastly, this article will highlight the current challenges and perspectives of the available turbulence models, in different codes, for the accurate prediction of flow and heat transfer in low-Prandtl fluids. © 2019 American Nuclear Society. All rights reserved
    corecore