10,448 research outputs found

    Generalized roof duality and bisubmodular functions

    Full text link
    Consider a convex relaxation f^\hat f of a pseudo-boolean function ff. We say that the relaxation is {\em totally half-integral} if f^(x)\hat f(x) is a polyhedral function with half-integral extreme points xx, and this property is preserved after adding an arbitrary combination of constraints of the form xi=xjx_i=x_j, xi=1xjx_i=1-x_j, and xi=γx_i=\gamma where \gamma\in\{0, 1, 1/2} is a constant. A well-known example is the {\em roof duality} relaxation for quadratic pseudo-boolean functions ff. We argue that total half-integrality is a natural requirement for generalizations of roof duality to arbitrary pseudo-boolean functions. Our contributions are as follows. First, we provide a complete characterization of totally half-integral relaxations f^\hat f by establishing a one-to-one correspondence with {\em bisubmodular functions}. Second, we give a new characterization of bisubmodular functions. Finally, we show some relationships between general totally half-integral relaxations and relaxations based on the roof duality.Comment: 14 pages. Shorter version to appear in NIPS 201

    A Faster Approximation Algorithm for the Gibbs Partition Function

    Get PDF
    We consider the problem of estimating the partition function Z(β)=xexp(β(H(x))Z(\beta)=\sum_x \exp(-\beta(H(x)) of a Gibbs distribution with a Hamilton H()H(\cdot), or more precisely the logarithm of the ratio q=lnZ(0)/Z(β)q=\ln Z(0)/Z(\beta). It has been recently shown how to approximate qq with high probability assuming the existence of an oracle that produces samples from the Gibbs distribution for a given parameter value in [0,β][0,\beta]. The current best known approach due to Huber [9] uses O(qlnn[lnq+lnlnn+ε2])O(q\ln n\cdot[\ln q + \ln \ln n+\varepsilon^{-2}]) oracle calls on average where ε\varepsilon is the desired accuracy of approximation and H()H(\cdot) is assumed to lie in {0}[1,n]\{0\}\cup[1,n]. We improve the complexity to O(qlnnε2)O(q\ln n\cdot\varepsilon^{-2}) oracle calls. We also show that the same complexity can be achieved if exact oracles are replaced with approximate sampling oracles that are within O(ε2qlnn)O(\frac{\varepsilon^2}{q\ln n}) variation distance from exact oracles. Finally, we prove a lower bound of Ω(qε2)\Omega(q\cdot \varepsilon^{-2}) oracle calls under a natural model of computation

    Structural Studies of Decaying Fluid Turbulence: Effect of Initial Conditions

    Full text link
    We present results from a systematic numerical study of structural properties of an unforced, incompressible, homogeneous, and isotropic three-dimensional turbulent fluid with an initial energy spectrum that develops a cascade of kinetic energy to large wavenumbers. The results are compared with those from a recently studied set of power-law initial energy spectra [C. Kalelkar and R. Pandit, Phys. Rev. E, {\bf 69}, 046304 (2004)] which do not exhibit such a cascade. Differences are exhibited in plots of vorticity isosurfaces, the temporal evolution of the kinetic energy-dissipation rate, and the rates of production of the mean enstrophy along the principal axes of the strain-rate tensor. A crossover between non-`cascade-type' and `cascade-type' behaviour is shown numerically for a specific set of initial energy spectra.Comment: 9 pages, 27 figures, Accepted for publication in Physical Review

    Generalising tractable VCSPs defined by symmetric tournament pair multimorphisms

    Full text link
    We study optimisation problems that can be formulated as valued constraint satisfaction problems (VCSP). A problem from VCSP is characterised by a \emph{constraint language}, a fixed set of cost functions taking finite and infinite costs over a finite domain. An instance of the problem is specified by a sum of cost functions from the language and the goal is to minimise the sum. We are interested in \emph{tractable} constraint languages; that is, languages that give rise to VCSP instances solvable in polynomial time. Cohen et al. (AIJ'06) have shown that constraint languages that admit the MJN multimorphism are tractable. Moreover, using a minimisation algorithm for submodular functions, Cohen et al. (TCS'08) have shown that constraint languages that admit an STP (symmetric tournament pair) multimorphism are tractable. We generalise these results by showing that languages admitting the MJN multimorphism on a subdomain and an STP multimorphisms on the complement of the subdomain are tractable. The algorithm is a reduction to the algorithm for languages admitting an STP multimorphism.Comment: 14 page

    New algorithms for the dual of the convex cost network flow problem with application to computer vision

    Get PDF
    Motivated by various applications to computer vision, we consider an integer convex optimization problem which is the dual of the convex cost network flow problem. In this paper, we first propose a new primal algorithm for computing an optimal solution of the problem. Our primal algorithm iteratively updates primal variables by solving associated minimum cut problems. The main contribution in this paper is to provide a tight bound for the number of the iterations. We show that the time complexity of the primal algorithm is K ¢ T(n;m) where K is the range of primal variables and T(n;m) is the time needed to compute a minimum cut in a graph with n nodes and m edges. We then propose a primal-dual algorithm for the dual of the convex cost network flow problem. The primal-dual algorithm can be seen as a refined version of the primal algorithm by maintaining dual variables (flow) in addition to primal variables. Although its time complexity is the same as that for the primal algorithm, we can expect a better performance practically. We finally consider an application to a computer vision problem called the panoramic stitching problem. We apply several implementations of our primal-dual algorithm to some instances of the panoramic stitching problem and test their practical performance. We also show that our primal algorithm as well as the proofs can be applied to the L\-convex function minimization problem which is a more general problem than the dual of the convex cost network flow problem

    MAP inference via Block-Coordinate Frank-Wolfe Algorithm

    Full text link
    We present a new proximal bundle method for Maximum-A-Posteriori (MAP) inference in structured energy minimization problems. The method optimizes a Lagrangean relaxation of the original energy minimization problem using a multi plane block-coordinate Frank-Wolfe method that takes advantage of the specific structure of the Lagrangean decomposition. We show empirically that our method outperforms state-of-the-art Lagrangean decomposition based algorithms on some challenging Markov Random Field, multi-label discrete tomography and graph matching problems

    Potts model, parametric maxflow and k-submodular functions

    Full text link
    The problem of minimizing the Potts energy function frequently occurs in computer vision applications. One way to tackle this NP-hard problem was proposed by Kovtun [19,20]. It identifies a part of an optimal solution by running kk maxflow computations, where kk is the number of labels. The number of "labeled" pixels can be significant in some applications, e.g. 50-93% in our tests for stereo. We show how to reduce the runtime to O(logk)O(\log k) maxflow computations (or one {\em parametric maxflow} computation). Furthermore, the output of our algorithm allows to speed-up the subsequent alpha expansion for the unlabeled part, or can be used as it is for time-critical applications. To derive our technique, we generalize the algorithm of Felzenszwalb et al. [7] for {\em Tree Metrics}. We also show a connection to {\em kk-submodular functions} from combinatorial optimization, and discuss {\em kk-submodular relaxations} for general energy functions.Comment: Accepted to ICCV 201

    Relation between shear parameter and Reynolds number in statistically stationary turbulent shear flows

    Full text link
    Studies of the relation between the shear parameter S^* and the Reynolds number Re are presented for a nearly homogeneous and statistically stationary turbulent shear flow. The parametric investigations are in line with a generalized perspective on the return to local isotropy in shear flows that was outlined recently [Schumacher, Sreenivasan and Yeung, Phys. Fluids, vol.15, 84 (2003)]. Therefore, two parameters, the constant shear rate S and the level of initial turbulent fluctuations as prescribed by an energy injection rate epsilon_{in}, are varied systematically. The investigations suggest that the shear parameter levels off for larger Reynolds numbers which is supported by dimensional arguments. It is found that the skewness of the transverse derivative shows a different decay behavior with respect to Reynolds number when the sequence of simulation runs follows different pathways across the two-parameter plane. The study can shed new light on different interpretations of the decay of odd order moments in high-Reynolds number experiments.Comment: 9 pages, 9 Postscript figure

    A note on the primal-dual method for the semi-metric labeling problem

    Get PDF
    Recently, Komodakis et al. [6] developed the FastPD algorithm for the semi-metric labeling problem, which extends the expansion move algorithm of Boykov et al. [2]. We present a slightly different derivation of the FastPD method
    corecore