Studies of the relation between the shear parameter S^* and the Reynolds
number Re are presented for a nearly homogeneous and statistically stationary
turbulent shear flow. The parametric investigations are in line with a
generalized perspective on the return to local isotropy in shear flows that was
outlined recently [Schumacher, Sreenivasan and Yeung, Phys. Fluids, vol.15, 84
(2003)]. Therefore, two parameters, the constant shear rate S and the level of
initial turbulent fluctuations as prescribed by an energy injection rate
epsilon_{in}, are varied systematically. The investigations suggest that the
shear parameter levels off for larger Reynolds numbers which is supported by
dimensional arguments. It is found that the skewness of the transverse
derivative shows a different decay behavior with respect to Reynolds number
when the sequence of simulation runs follows different pathways across the
two-parameter plane. The study can shed new light on different interpretations
of the decay of odd order moments in high-Reynolds number experiments.Comment: 9 pages, 9 Postscript figure