99 research outputs found

    A comparison of ozone and chlorine to reduce the microbial load in fresh lettuce

    Get PDF
    The effects of ozone were examined on fresh head lettuce as a means for reducing the initial microbial load (about 10^4-10^5 CFU/g) on the lettuce. Ozone concentrations used were 50 parts per million and 100 ppm. These concentrations resulted in an average reduction ofboth mesophilic and psychrotrophic bacteria of 2.04 and 2.57 log_10 CFU/g on the initial load of microorganisms on the lettuce. Once the effect was established, ozone was compared to a sodium hypocholorite treatment, which is a method currently used in industry. The concentrations used for comparison of ozone and chlorine were 1 mM and 2 mM for each. The reactions were stopped in both cases by using sodium thiosulfate (Na2S2O3) to determine the initial effect of both ozone and chlorine. By using a neutralizer, the effects due to residual ozone or chlorine on the lettuce were eliminated. At 1 mM, ozone resulted in an average inactivation of mesophilic and psychrotrophic bacteria of 1.15 log_10 CFU/g and at 2 mM, an average inactivation of 1.68 log_10 CFU/g. At 1 mM and 2 mM of chlorine, the average inactivation of mesophilic and psychrotrophic bacteria was 1.41 and 1.90 log_10 CFU/g respectively

    Systems analysis of the transcriptional response of human ileocecal epithelial cells to Clostridium difficile toxins and effects on cell cycle control

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Toxins A and B (TcdA and TcdB) are <it>Clostridium difficile</it>'s principal virulence factors, yet the pathways by which they lead to inflammation and severe diarrhea remain unclear. Also, the relative role of either toxin during infection and the differences in their effects across cell lines is still poorly understood. To better understand their effects in a susceptible cell line, we analyzed the transciptome-wide gene expression response of human ileocecal epithelial cells (HCT-8) after 2, 6, and 24 hr of toxin exposure.</p> <p>Results</p> <p>We show that toxins elicit very similar changes in the gene expression of HCT-8 cells, with the TcdB response occurring sooner. The high similarity suggests differences between toxins are due to events beyond transcription of a single cell-type and that their relative potencies during infection may depend on differential effects across cell types within the intestine. We next performed an enrichment analysis to determine biological functions associated with changes in transcription. Differentially expressed genes were associated with response to external stimuli and apoptotic mechanisms and, at 24 hr, were predominately associated with cell-cycle control and DNA replication. To validate our systems approach, we subsequently verified a novel G<sub>1</sub>/S and known G<sub>2</sub>/M cell-cycle block and increased apoptosis as predicted from our enrichment analysis.</p> <p>Conclusions</p> <p>This study shows a successful example of a workflow deriving novel biological insight from transcriptome-wide gene expression. Importantly, we do not find any significant difference between TcdA and TcdB besides potency or kinetics. The role of each toxin in the inhibition of cell growth and proliferation, an important function of cells in the intestinal epithelium, is characterized.</p

    Shiga toxin 2-induced intestinal pathology in infant rabbits is A-subunit dependent and responsive to the tyrosine kinase and potential ZAK inhibitor imatinib

    Get PDF
    Shiga toxin producing Escherichia coli (STEC) are a major cause of food-borne illness worldwide. However, a consensus regarding the role Shiga toxins play in the onset of diarrhea and hemorrhagic colitis (HC) is lacking. One of the obstacles to understanding the role of Shiga toxins to STEC-mediated intestinal pathology is a deficit in small animal models that perfectly mimic human disease. Infant rabbits have been previously used to study STEC and/or Shiga toxin-mediated intestinal inflammation and diarrhea. We demonstrate using infant rabbits that Shiga toxin-mediated intestinal damage requires A-subunit activity, and like the human colon, that of the infant rabbit expresses the Shiga toxin receptor Gb3. We also demonstrate that Shiga toxin treatment of the infant rabbit results in apoptosis and activation of p38 within colonic tissues. Finally we demonstrate that the infant rabbit model may be used to test candidate therapeutics against Shiga toxin-mediated intestinal damage. While the p38 inhibitor SB203580 and the ZAK inhibitor DHP-2 were ineffective at preventing Shiga toxin-mediated damage to the colon, pretreatment of infant rabbits with the drug imatinib resulted in a decrease of Shiga toxin-mediated heterophil infiltration of the colon. Therefore, we propose that this model may be useful in elucidating mechanisms by which Shiga toxins could contribute to intestinal damage in the human

    Cryptosporidium Priming Is More Effective than Vaccine for Protection against Cryptosporidiosis in a Murine Protein Malnutrition Model

    Get PDF
    Cryptosporidium is a major cause of severe diarrhea, especially in malnourished children. Using a murine model of C. parvum oocyst challenge that recapitulates clinical features of severe cryptosporidiosis during malnutrition, we interrogated the effect of protein malnutrition (PM) on primary and secondary responses to C. parvum challenge, and tested the differential ability of mucosal priming strategies to overcome the PM-induced susceptibility. We determined that while PM fundamentally alters systemic and mucosal primary immune responses to Cryptosporidium, priming with C. parvum (106 oocysts) provides robust protective immunity against re-challenge despite ongoing PM. C. parvum priming restores mucosal Th1-type effectors (CD3+CD8+CD103+ T-cells) and cytokines (IFNĪ³, and IL12p40) that otherwise decrease with ongoing PM. Vaccination strategies with Cryptosporidium antigens expressed in the S. Typhi vector 908htr, however, do not enhance Th1-type responses to C. parvum challenge during PM, even though vaccination strongly boosts immunity in challenged fully nourished hosts. Remote non-specific exposures to the attenuated S. Typhi vector alone or the TLR9 agonist CpG ODN-1668 can partially attenuate C. parvum severity during PM, but neither as effectively as viable C. parvum priming. We conclude that although PM interferes with basal and vaccine-boosted immune responses to C. parvum, sustained reductions in disease severity are possible through mucosal activators of host defenses, and specifically C. parvum priming can elicit impressively robust Th1-type protective immunity despite ongoing protein malnutrition. These findings add insight into potential correlates of Cryptosporidium immunity and future vaccine strategies in malnourished children

    p38 Mitogen-Activated Protein Kinase Mediates Lipopolysaccharide and Tumor Necrosis Factor Alpha Induction of Shiga Toxin 2 Sensitivity in Human Umbilical Vein Endothelial Cellsā–æ ā€ 

    No full text
    Escherichia coli O157:H7 Shiga toxin 2 (Stx2), one of the causative agents of hemolytic-uremic syndrome, is toxic to endothelial cells, including primary cultured human umbilical vein endothelial cells (HUVEC). This sensitivity of cells to Stx2 can be increased with either lipopolysaccharide (LPS) or tumor necrosis factor alpha (TNF-Ī±). The goal of the present study was to identify the intracellular signaling pathway(s) by which LPS and TNF-Ī± sensitize HUVEC to the cytotoxic effects of Stx2. To identify these pathways, specific pharmacological inhibitors and small interfering RNAs were tested with cell viability endpoints. A time course and dose response experiment for HUVEC exposure to LPS and TNF-Ī± showed that a relatively short exposure to either agonist was sufficient to sensitize the cells to Stx2 and that both agonists stimulated intracellular signaling pathways within a short time. Cell viability assays indicated that the p38 mitogen-activated protein kinase (MAPK) inhibitors SB202190 and SB203580 and the general protein synthesis inhibitor cycloheximide inhibited both the LPS and TNF-Ī± sensitization of HUVEC to Stx2, while all other inhibitors tested did not inhibit this sensitization. Additionally, SB202190 reduced the cellular globotriaosylceramide content under LPS- and TNF-Ī±-induced conditions. In conclusion, our results show that LPS and TNF-Ī± induction of Stx2 sensitivity in HUVEC is mediated through a pathway that includes p38 MAPK. These results indicate that inhibition of p38 MAPK in endothelial cells may protect a host from the deleterious effects of Stx2

    Shadow prices of metabolites that decrease flux through reactions from Random Forest.

    No full text
    For each objective function (OF) listed in Fig 3A, the metabolites categorized as decreasing and with a shadow price (TIFF)</p

    Metabolic differences between toxin states are driven by strain.

    No full text
    (A) Summary table of the RIPTiDe contextualized models including the strain, toxin production level, and number of genes, reactions, and metabolites. (B) Normalized, absolute flux values for reactions indicated by Random Forest classifier as important for distinguishing between toxin levels. C. difficile strains 630 and R20291 are shown by light and dark purple respectively. Toxin transcript levels are shown by light (low) and dark (high) teal. Starred reactions are contextualized in panel (C). (C) Map of reactions in the metabolic model. Reactions identified by Random Forest analysis in panel (B) are starred. Arg: Arginine, Orn: Ornithine, Pro: Proline, Suc: Sucrose, UDP-Glc: UDP-Glucose, Glc1P: Glucose-1-phospate, ManNAc: N-acetyl-D-mannosamine, Guo: Guanosine, dGuo: Deoxyguanosine, G: Guanine.</p
    • ā€¦
    corecore