64 research outputs found

    Single-cell proteomic and transcriptomic analysis of macrophage heterogeneity

    Get PDF
    Macrophages are innate immune cells with diverse functional and molecular phenotypes. This diversity is largely unexplored at the level of single-cell proteomes because of limitations of quantitative single-cell protein analysis. To overcome this limitation, we developed SCoPE2, which substantially increases quantitative accuracy and throughput while lowering cost and hands-on time by introducing automated and miniaturized sample preparation. These advances enable us to analyze the emergence of cellular heterogeneity as homogeneous monocytes differentiate into macrophage-like cells in the absence of polarizing cytokines. SCoPE2 quantified over 3,042 proteins in 1,490 single monocytes and macrophages in ten days of instrument time, and the quantified proteins allow us to discern single cells by cell type. Furthermore, the data uncover a continuous gradient of proteome states for the macrophages, suggesting that macrophage heterogeneity may emerge in the absence of polarizing cytokines. This gradient correlates to the inflammatory axis of classically and alternatively activated macrophages. Parallel measurements of transcripts by 10x Genomics suggest that our measurements sample 20-fold more protein copies than RNA copies per gene, and thus SCoPE2 supports quantification with improved count statistics. The joint distributions of proteins and transcripts allowed exploring regulatory interactions, such as between the tumor suppressor p53, its transcript, and the transcripts of genes regulated by p53. Our methodology lays the foundation for quantitative single-cell analysis of proteins by mass-spectrometry and demonstrates the potential for inferring transcriptional and post-transcriptional regulation from variability across single cells. Abstract Figure</h4

    The type III effector EspF coordinates membrane trafficking by the spatiotemporal activation of two eukaryotic signaling pathways

    Get PDF
    Bacterial toxins and effector proteins hijack eukaryotic enzymes that are spatially localized and display rapid signaling kinetics. However, the molecular mechanisms by which virulence factors engage highly dynamic substrates in the host cell environment are poorly understood. Here, we demonstrate that the enteropathogenic Escherichia coli (EPEC) type III effector protein EspF nucleates a multiprotein signaling complex composed of eukaryotic sorting nexin 9 (SNX9) and neuronal Wiskott-Aldrich syndrome protein (N-WASP). We demonstrate that a specific and high affinity association between EspF and SNX9 induces membrane remodeling in host cells. These membrane-remodeling events are directly coupled to N-WASP/Arp2/3–mediated actin nucleation. In addition to providing a biochemical mechanism of EspF function, we find that EspF dynamically localizes to membrane-trafficking organelles in a spatiotemporal pattern that correlates with SNX9 and N-WASP activity in living cells. Thus, our findings suggest that the EspF-dependent assembly of SNX9 and N-WASP represents a novel form of signaling mimicry used to promote EPEC pathogenesis and gastrointestinal disease
    corecore