7 research outputs found

    Uropathogenic Escherichia coli virulence and innate immune responses during urinary tract infection

    Get PDF
    Urinary tract infections (UTI) are among the most common infectious diseases of humans and are the most common nosocomial infections in the developed world. It is estimated that 40-50% of women and 5% of men will develop a UTI in their lifetime, and UTI accounts for more than 1 million hospitalizations and $1.6 billion in medical expenses each year in the USA. Uropathogenic Escherichia coli (UPEC) is the primary cause of UTI. This review presents an overview of recent discoveries related to the primary virulence factors of UPEC and major innate immune responses to infection of the lower urinary tract. New and emerging themes in UPEC research are discussed in the context of the interface between host and pathogen

    The E3 ubiquitin ligase RNF144B is LPS-inducible in human but not mouse macrophages, and promotes inducible IL-1β expression

    No full text
    Differences in human and mouse immune responses may partly reflect species-specific adaptations and can provide important insights into human immunity. In this study, we show that RNF144B, which encodes an E3 ubiquitin ligase, was lipopolysaccharide-inducible in primary human macrophages and in human macrophage-like THP-1 cells. In contrast, Rnf144b was not lipopolysaccharide-inducible in several mouse cell populations, including primary macrophages from C57BL/6 and BALB/c mice and RAW264.7 macrophages. Similarly, Rnf144b was not up-regulated by infection of C57BL/6 mice with Escherichia coli. Although the human and mouse RNF144B genes have conserved transcription start sites, cap analysis of gene expression data confirmed that the RNF144B promoter directs transcription in human but not mouse macrophages. The human andmouse RNF144B genes are controlled by highly conserved TATA-containing promoters, but subtle differences in transcription factor binding sites may account for differential regulation. Using gene silencing, we showed that RNF144B is necessary for priming of inflammasome responses in primary human macrophages. Specifically, RNF144B promotes lipopolysaccharide-inducible IL-1b mRNA expression but does not regulate expression of several other lipopolysaccharide-inducible cytokines (e.g., interleukin-10, interferon-gamma) or affect expression of inflammasome components or substrates (e.g., procaspase-1, pro-interleukin-18). Our findings thus revealed a species-specific regulatory mechanism for selective inflammasome priming in human macrophages

    An mRNA atlas of G protein-coupled receptor expression during primary human monocyte/macrophage differentiation and lipopolysaccharide-mediated activation identifies targetable candidate regulators of inflammation

    No full text
    G protein-coupled receptors (GPCRs) are among the most important targets in drug discovery. In this study, we used TaqMan Low Density Arrays to profile the full GPCR repertoire of primary human macrophages differentiated from monocytes using either colony stimulating factor-1 (CSF-1/M-CSF) (CSF-1 Mφ) or granulocyte macrophage colony stimulating factor (GM-CSF) (GM-CSF Mφ). The overall trend was a downregulation of GPCRs during monocyte to macrophage differentiation, but a core set of 10 genes (e.g. LGR4, MRGPRF and GPR143) encoding seven transmembrane proteins were upregulated, irrespective of the differentiating agent used. Several of these upregulated GPCRs have not previously been studied in the context of macrophage biology and/or inflammation. As expected, CSF-1 Mφ and GM-CSF Mφ exhibited differential inflammatory cytokine profiles in response to the Toll-like Receptor (TLR)4 agonist lipopolysaccharide (LPS). Moreover, 15 GPCRs were differentially expressed between these cell populations in the basal state. For example, EDG1 was expressed at elevated levels in CSF-1 Mφ versus GM-CSF Mφ, whereas the reverse was true for EDG6. 101 GPCRs showed differential regulation over an LPS time course, with 65 of these profiles being impacted by the basal differentiation state (e.g. GPRC5A, GPRC5B). Only 14 LPS-regulated GPCRs showed asynchronous behavior (divergent LPS regulation) with respect to differentiation status. Thus, the differentiation state primarily affects the magnitude of LPS-regulated expression, rather than causing major reprogramming of GPCR gene expression profiles. Several GPCRs showing differential profiles between CSF-1 Mφ and GM-CSF Mφ (e.g. P2RY8, GPR92, EMR3) have not been widely investigated in macrophage biology and inflammation. Strikingly, several closely related GPCRs displayed completely opposing patterns of regulation during differentiation and/or activation (e.g. EDG1 versus EDG6, LGR4 versus LGR7, GPRC5A versus GPRC5B). We propose that selective regulation of GPCR5A and GPCR5B in CSF-1 Mφ contributes to skewing toward the M2 macrophage phenotype. Our analysis of the GPCR repertoire expressed during primary human monocyte to macrophage differentiation and TLR4-mediated activation provides a valuable new platform for conducting future functional analyses of individual GPCRs in human macrophage inflammatory pathways

    The role of H4 flagella in Escherichia coli ST131 virulence

    Get PDF
    Escherichia coli sequence type 131 (ST131) is a globally dominant multidrug resistant clone associated with urinary tract and bloodstream infections. Most ST131 strains exhibit resistance to multiple antibiotics and cause infections associated with limited treatment options. The largest sub-clonal ST131 lineage is resistant to fluoroquinolones, contains the type 1 fimbriae fimH30 allele and expresses an H4 flagella antigen. Flagella are motility organelles that contribute to UPEC colonisation of the upper urinary tract. In this study, we examined the specific role of H4 flagella in ST131 motility and interaction with host epithelial and immune cells. We show that the majority of H4-positive ST131 strains are motile and are enriched for flagella expression during static pellicle growth. We also tested the role of H4 flagella in ST131 through the construction of specific mutants, over-expression strains and isogenic mutants that expressed alternative H1 and H7 flagellar subtypes. Overall, our results revealed that H4, H1 and H7 flagella possess conserved phenotypes with regards to motility, epithelial cell adhesion, invasion and uptake by macrophages. In contrast, H4 flagella trigger enhanced induction of the anti-inflammatory cytokine IL-10 compared to H1 and H7 flagella, a property that may contribute to ST131 fitness in the urinary tract

    Strain- and host species-specific inflammasome activation, IL-1beta release, and cell death in macrophages infected with uropathogenic Escherichia coli

    Get PDF
    Uropathogenic Escherichia coli (UPEC) is the main etiological agent of urinary tract infections (UTIs). Little is known about interactions between UPEC and the inflammasome, a key innate immune pathway. Here we show that UPEC strains CFT073 and UTI89 trigger inflammasome activation and lytic cell death in human macrophages. Several other UPEC strains, including two multidrug-resistant ST131 isolates, did not kill macrophages. In mouse macrophages, UTI89 triggered cell death only at a high multiplicity of infection, and CFT073-mediated inflammasome responses were completely NLRP3-dependent. Surprisingly, CFT073- and UTI89-mediated responses only partially depended on NLRP3 in human macrophages. In these cells, NLRP3 was required for interleukin-1β (IL-1β) maturation, but contributed only marginally to cell death. Similarly, caspase-1 inhibition did not block cell death in human macrophages. In keeping with such differences, the pore-forming toxin α-hemolysin mediated a substantial proportion of CFT073-triggered IL-1β secretion in mouse but not human macrophages. There was also a more substantial α-hemolysin-independent cell death response in human vs. mouse macrophages. Thus, in mouse macrophages, CFT073-triggered inflammasome responses are completely NLRP3-dependent, and largely α-hemolysin-dependent. In contrast, UPEC activates an NLRP3-independent cell death pathway and an α-hemolysin-independent IL-1β secretion pathway in human macrophages. This has important implications for understanding UTI in humans
    corecore