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Abstract 23 

Urinary tract infections (UTI) are among the most common infectious diseases of humans 24 

and are the most common nosocomial infection in the developed world. It is estimated that 25 

40-50% of women and 5% of men will develop a UTI in their lifetime, and UTI accounts for 26 

more than 1 million hospitalizations and $1.6 billion in medical expenses each year in the 27 

USA. Uropathogenic Escherichia coli (UPEC) is the primary cause of UTI. This review 28 

presents an overview of recent discoveries related to the primary virulence factors of 29 

UPEC and major innate immune responses to infection of the lower urinary tract. New and 30 

emerging themes in UPEC research are discussed in the context of the interface between 31 

host and pathogen.  32 

  33 



3 

 

Introduction 34 

Urinary tract infections (UTI) are one of the most common bacterial infections of humans 35 

and are a major cause of morbidity. UTI usually starts as a bladder infection (cystitis), but 36 

can develop to acute kidney infection (pyelonephritis), ultimately resulting in scarring and 37 

renal failure. UTI is caused by a range of pathogens, with uropathogenic Escherichia coli 38 

(UPEC) being the most common etiological agent. This review will focus on UPEC, 39 

discussing recent advances in our knowledge of its virulence factors and innate immune 40 

responses to acute bladder infection.  41 

 42 

UPEC express multiple virulence factors that promote UTI 43 

UPEC cause more than 80% of all UTI. UPEC strains possess an arsenal of virulence 44 

factors that contribute to their ability to cause disease, including fimbrial adhesins, toxins, 45 

flagella, autotransporter proteins and iron-acquisition systems [1]. UPEC fitness in the 46 

nutritionally poor urinary tract is also aided by the utilization of short peptides and amino 47 

acids as a carbon source during infection [2] as well as the presence of type II toxin-48 

antitoxin systems [3]. 49 

 50 

UPEC adherence to the urinary tract epithelium is primarily mediated by fimbriae 51 

assembled by the chaperone-usher pathway [4] (Box 1). Type 1 fimbriae, one of the best-52 

characterized UPEC chaperone-usher fimbriae, bind to α-D-mannosylated proteins such 53 

as uroplakins that are abundant in the bladder via the tip-located FimH adhesin. Type 1 54 

fimbriae enhance colonization and activation of host innate immune pathways in the 55 

murine UTI model, and promote biofilm formation and host cell invasion [1]. FimH-56 

mediated binding to target receptors is enhanced through the formation of catch bonds, 57 

mechanical forces that contribute to FimH-receptor complex interactions [5]. Recent work 58 
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has also shown that FimH is recognized by host pattern recognition receptors (PRRs), 59 

thus leading to potent induction of innate antimicrobial responses [6]. Additional UPEC 60 

surface components that contribute to colonization of the urinary tract include established 61 

factors such as other fimbriae (e.g. P, F1C, S and Afa) [7] and more recently identified 62 

factors such as curli [8], autotransporter proteins (e.g. Ag43, UpaH) [9,10], TosA [11] and 63 

flagella [12]. 64 

 65 

UPEC secrete a number of toxins that damage or kill host epithelial cells. One of the most 66 

common UPEC toxins, α-hemolysin, mediates host cell lysis, thus promoting the release of 67 

nutrients such as iron that can be utilized by UPEC for growth and/or survival. Sublytic 68 

concentrations of α-hemolysin also contribute to virulence by enabling UPEC to modulate 69 

epithelial cell functions as will be discussed later [13]. Another toxin, cytotoxic necrotizing 70 

factor 1 (CNF1) is a Rho GTPase that promotes invasion of UPEC into host cells [14]. 71 

Recent data suggest that UPEC CNF1 and α-hemolysin may contribute to the signs and 72 

symptoms of cystitis (along with LPS as discussed further below) [15]. In the zebrafish 73 

model, α-hemolysin and CNF1 function primarily in the neutralization of phagocytes [16]. 74 

 75 

Iron is essential for bacterial growth and is limited in the urinary tract. Four different Fe3+-76 

chelating siderophore systems have been characterized in UPEC, namely enterobactin, 77 

the glucosylated enterobactin derivative salmochelin, yersiniabactin and aerobactin [17]. 78 

UPEC strains may express different combinations of these siderophores, with some 79 

strains able to express all four siderophores [18]. The siderophore repertoire expressed by 80 

a given UPEC strain may influence the ability of the bacteria to grow and persist in human 81 

urine [19]. Siderophores also possess functions distinct from iron binding; for example, 82 

Chaturvedi et al. showed that yersiniabactin can sequester host-derived copper (II), thus 83 
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enhancing resistance to copper stress [20]. Many UPEC strains also express heme 84 

receptors (e.g. ChuA and Hma) that enable iron uptake and contribute to virulence [21]. An 85 

increased understanding of the role of iron acquisition systems, and indeed additional 86 

systems required for the transport of other transition metals such as zinc, copper and 87 

manganese, may uncover new concepts in UPEC virulence and nutritional immunity at the 88 

host-pathogen interface [22].  89 

 90 

Intracellular and extracellular lifestyles are hallmarks of UPEC 91 

UPEC pathogenesis during experimental UTI involves the occupancy of both extracellular 92 

and intracellular niches. Prototype UPEC strains including the pyelonephritis strain 93 

CFT073 and the cystitis strain UTI89 possess different sets of virulence factors and utilize 94 

these lifestyles to different degrees. For example, CFT073 is a highly toxigenic strain that 95 

can cause severe damage to the urothelium and immunopathology [23], but can also 96 

invade epithelial cells and form intracellular bacterial communities (IBCs) [24]. In contrast, 97 

UTI89 is a more invasive strain that forms IBCs and survives intracellularly, but also 98 

expresses several toxins that cause urothelial damage [25]. The mosaic nature of the 99 

UPEC genome means that there are no unique genetic features that clearly distinguish 100 

these different lifestyles. Recent attempts to define UPEC population dynamics during 101 

infection may also reflect differences between these two broad host-adapted lifestyle traits 102 

[26,27]. Added to the complexity of these different UPEC lifestyles is the emergence of 103 

multidrug resistant globally disseminated clones such as E. coli of serotype O25b:H4 and 104 

sequence type 131 (E. coli ST131), for which a genome sequence and particular key 105 

virulence mechanisms were recently described [28]. For cystitis strains like UTI89, type 1 106 

fimbriae-mediated adherence to superficial bladder facet cells leads to invasion, rapid 107 

bacterial replication in the facet cell cytoplasm and the formation of IBCs [29]. These 108 
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events are dependent on the FimH adhesin and are associated with specific amino acid 109 

residues that are under positive selection [30]. Other UPEC factors that contribute to IBC 110 

formation include Ag43, the polysaccharide capsule and sialic acid [31]. IBC formation 111 

culminates in the bursting of superficial facet cells and the release of UPEC, often as long 112 

filamentous bacteria [32]. IBCs may enable UPEC evasion of the host immune response, 113 

permit re-infection and contribute to chronicity [29]. IBCs and filamentous bacteria have 114 

also been observed in urine from women suffering acute cystitis [33]. A comprehensive 115 

inventory of UPEC biofilm-associated genes was recently mapped using transposon 116 

mutagenesis and may provide a framework for further analysis of UPEC extracellular and 117 

intracellular biofilm growth [34]. UPEC can also establish quiescent intracellular reservoirs 118 

(QIRs) that contain small numbers of bacteria and may play a role in latent chronic 119 

infection and recurrent UTI [35]. The ability of UPEC to survive intracellularly is not limited 120 

to epithelial cells. Some UPEC strains can survive in primary mouse macrophages within 121 

lysosomal-associated membrane protein 1-positive vesicles, a property that may 122 

contribute to their dissemination in the urinary tract [36].  123 

 124 

Innate immune responses to UPEC control but may also predispose to UTI  125 

Several findings over the past few years continue to inform the view that UPEC cystitis is 126 

not a simple condition that develops, is detected and resolved by management, and leaves 127 

a convalescent host without further implications for disease. Increased risk for recurrent 128 

UTI subsequent to primary cystitis has been known for sometime, but recent studies have 129 

uncovered new contributions of innate defenses to pain, symptoms, defense, and 130 

predisposition to chronicity (Figure 1). Hannan et al. showed that inflammatory events 131 

activated in the bladder during early responses to UPEC in mice provide the 132 

immunological stage for subsequent chronicity and susceptibility to recurrent infection [37]. 133 
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Signature responses comprising interleukin (IL)-5, IL-6, and granulocyte-colony stimulating 134 

factor (G-CSF) appear to mediate increased susceptibility in a Toll-like Receptor (TLR)4-135 

dependent manner, which suggests involvement of UPEC lipopolysaccharide (LPS) and/or 136 

P fimbriae [38]. Two genome-wide transcriptomic studies by Duell et al. and Tan et al. 137 

have provided insight into the factors that might contribute to innate resistance and/or 138 

susceptibility to UPEC on a global scale [39,40]. These studies build on prior analyses of 139 

mice with cystitis [41] and show that bladder inflammation in response to UPEC is rapid, 140 

pathogen-specific, and extensive encompassing 1564-2507 active genes that drive diverse 141 

canonical pathways such as IL-10, IL-17A, TLR, and NOD-like receptor signalling, as well 142 

as networks for cell movement, death, proliferation and maturation [39,40]. Collectively, 143 

this suggests that UPEC may somehow harness complex innate immune responses in the 144 

bladder to promote bacterial survival, predisposition to UTI and chronicity. 145 

 146 

The double-edge sword of innate immune responses to UPEC does not appear to be 147 

limited to experimental models; a recent description of patients that progressed from 148 

cystitis to UPEC bacteremia, for example, suggests clinical relevance. In individuals with 149 

cystitis, Marschall et al. showed that specific symptoms of hesitancy/retention are a risk 150 

factor for progression to urinary-source bacteremia [42]. UTI symptoms such as pelvic pain 151 

appear to have a basis in local inflammatory events such as TLR signalling [43], possibly 152 

linking innate immune activation, pain and UTI progression. However, the O-antigen of 153 

UPEC LPS appears to play a role in the pain sensation independent of inflammation [44]. 154 

Also in the murine model of UTI, pain occurs independent of the level of bacterial 155 

colonization and inflammation, and pain can persist after clearance of UPEC from the 156 

genitourinary tissues [45]. While toxins contribute to inflammation and especially 157 

exfoliation and/or destruction of the urothelium toxin expression is not required for 158 
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inflammation in acute UTI and the contribution of toxins to pain responses have yet to be 159 

elucidated [15]. Thus, while recent data hint at potential links between inflammatory events 160 

and pain, studies are now needed to define which inflammatory pathways and molecules 161 

contribute to pain, how host genetic background impacts on these responses, and the 162 

extent to which these pathways are triggered in patients during acute versus subacute 163 

UTI. Clinically relevant models such as described in [37] will be essential to further define 164 

the basis of pain, severity and progression in experimental UTI. TLR4 signalling [43] has 165 

also been associated with inflammation and acute UTI because TLR4-deficient mice 166 

develop asymptomatic infection [46], although questions about other unidentified genes 167 

and/or PRRs that may impact host susceptibility  (Box 2) warrant further investigation [47].  168 

 169 

Recently identified innate mechanisms that constrain UPEC: peptides, receptors, 170 

and cytokines  171 

Recent discoveries on the antimicrobial peptide cathelicidin, as well as the erythropoietin 172 

and P2Y receptors, have revealed new aspects of defense against UPEC. Production of 173 

cathelicidin constrains UPEC in the bladder, and its production is boosted by vitamin D, 174 

which may represent a potential new adjunct for the prevention of UTI [48]. New insight 175 

into potential therapeutic avenues is also provided from discoveries on invasion into 176 

urothelial cells. Polgarova et al. described a synthetic erythropoietin analogue that 177 

modifies early steps in the host response to UPEC by moderating IL-8 production and 178 

reducing UPEC invasion [49]. This could aid in the elimination of bacteria while reducing 179 

immunopathology that has been linked to chronic and recurrent infection [37]. Extracellular 180 

ATP and P2Y receptor activation appear to drive IL-8 production [50], representing an 181 

alternate mechanism of non-TLR4-driven pro-inflammatory cytokine production in 182 

urothelial cells infected with UPEC. Finally, Erman et al. demonstrated that UPEC induces 183 
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serum amyloid A, an acute phase protein, and that this constrained early UPEC 184 

colonization of the bladder [51]. This effect may stem from prevention of biofilm formation, 185 

however other mechanisms may also be involved; for example, serum amyloid A promotes 186 

IL-10 production from neutrophils [52], which could contribute to beneficial effects. 187 

 188 

Two recent discoveries on IL-17 [53] and IL-10 [39] have revealed protective roles in 189 

UPEC infection. Both cytokines, like G-CSF [54], are produced following UPEC infection, 190 

but unlike G-CSF, they appear to somehow restrict UPEC’s ability to maintain bladder 191 

infection. Ingersoll et al. showed that neutrophils are rapidly recruited to the mouse bladder 192 

in a G-CSF-dependent manner and reported an association between increased UPEC 193 

survival and reduced neutrophil responses [54]. Others previously showed that neutrophil 194 

responses in the infected urinary tract depend on host genetic background and are reliant 195 

on macrophage inflammatory protein-2 [55,56]. The mechanisms by which reduced G-CSF 196 

responses directly promote UPEC survival remain unknown, as discussed elsewhere [54]. 197 

The known actions of IL-17 and IL-10 towards cell recruitment and immune regulation 198 

[57,58] imply that these cytokines may be required to fine tune innate cellular defenses to 199 

UPEC in the bladder. Recent insights into NF-kappaB [59] and IRF3-dependent signalling 200 

[60] also point to activation of specific signalling pathways to distinct E. coli strains that 201 

trigger different mechanisms of innate immune activation [40,61]. Thus, further analysis of 202 

IL-17, IL-10, and G-CSF regulation and function will be needed to specify their role in UTI 203 

considering these new insights.  204 

 205 
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UPEC Employ Multiple Mechanisms to Curb Innate Immune Responses  206 

Manipulation of innate immune responses by UPEC may enhance their survival [62] and 207 

there are several recent examples of this. Some UPEC strains secrete TcpC, a Toll/IL-1 208 

receptor (TIR) domain-containing protein that exhibits structural similarity to the TIR 209 

domain of human TLR1 [63]. TcpC inhibits TIR domain signalling and downstream 210 

pathways through myeloid differentiation primary response protein-dependent and -211 

independent effects [64]. Wang et al. has shown that expression of dynamin2- and 212 

endothelial nitric oxide synthase is driven by UPEC and promotes invasion into host cells 213 

[65]. Two other recent demonstrations by Hilbert et al. and Dhakal et al. show that UPEC 214 

utilizes α-hemolysin to inhibit epithelial cytokine production, as well as cell adhesion and 215 

inflammation [13,66]. Finally, UPEC curli were recently shown to interact with the 216 

antimicrobial peptide cathelicidin LL-37, and thereby modulate early inflammatory events 217 

mounted against infection [8].  218 

 219 

Autophagy has emerged as an important mechanism in bacterial pathogenesis, and recent 220 

data suggests that this process is involved in innate defense against UPEC. Wang et al. 221 

demonstrated a pro-pathogen role for the autophagy protein Atg16L1; deficiency in this 222 

factor conferred protection against infection [67]. Utilization of autophagy pathways by 223 

UPEC may impede the release of inflammatory cytokines such as IL-1β [68]. Two other 224 

separate studies on attenuation of innate responses by UPEC in the context of dampening 225 

innate responses offer alternative avenues for further investigation; firstly, the discovery 226 

that cyclooxygenase-2 is regulated by UPEC in urothelial cells [69], and secondly, the 227 

finding that indoleamine 2,3-dioxygenase is induced by UPEC, which attenuates innate 228 

responses to epithelial infection [70]. Jointly, these data suggest a potential link between 229 

cyclooxygenase-2 and indoleamine 2,3-dioxygenase in UPEC mediated UTI, as reviewed 230 
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elsewhere in the context of non-infectious diseases [71].  231 

 232 

Challenges, Opportunities and Future Research Directions  233 

As with many pathogens, UPEC employs multiple strategies to evade and manipulate host 234 

barrier defence and innate immune responses. Our increased understanding of these 235 

pathogen-host interactions has uncovered novel approaches that could be used to combat 236 

UPEC mediated UTI, such as strategies aimed at selectively boosting the production or 237 

function of molecules like IL-10, IL-17, cathelicidin and serum amyloid A. Novel 238 

therapeutics using pathogen-derived molecules that directly impact innate immune 239 

responses and manipulate host response pathways also seem plausible. These areas of 240 

investigation should be considered in view of the genotypic and phenotypic diversity of 241 

UPEC clonal groups, and the wide spectrum of UTI pathologies associated with different 242 

strains. While research has focused on prototype UPEC strains such as CFT073 and 243 

UTI89, future research also needs to study emerging strains. In particular, the 244 

pathogenesis mechanisms employed by multidrug resistant UPEC strains such as the 245 

globally disseminated E. coli ST131 clone should be addressed.  246 

  247 
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Figure 1.  598 

UPEC virulence factors and innate immune responses that help to shape the pathogenesis 599 

and severity of UTI. Increased severity of disease such as the transition from cystitis to 600 

bacteremia is associated with immunopathology that stems from severe inflammation, and 601 

this underlies the pain and certain symptoms of acute infection. Decreased severity of 602 

infection, on the other hand, is associated with less severe inflammatory responses. UPEC 603 

virulence factors directly influence the extent of innate immune responses and determine 604 

potential lifestyles of the pathogen within the host environment.  605 

  606 
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BOX 1 607 

Adherence to host cells, a critical first step in UPEC infection, is mediated by 608 

fimbriae. 609 

 610 

• Chaperone-Usher (CU) fimbriae are encoded by a cluster of genes under the 611 

control of the same promoter (operon). CU fimbrial operons typically consist of a gene set 612 

encoding an outer membrane usher and a periplasmic chaperone, flanked by one or more 613 

genes encoding structural subunits.  614 

 615 

• Many UPEC strains contain >10 CU fimbrial operons. These are either located on 616 

the chromosome backbone or on mobile genetic elements, such as pathogenicity islands 617 

and plasmids. 618 

 619 

• Expression of some CU fimbriae in UPEC is phase variable, resulting in 620 

heterogeneous bacterial populations with respect to adhesin production.  621 

 622 

• CU fimbriae are hierarchically displayed at the bacterial cell surface via regulatory 623 

cross-talk. This aids the temporal and spatial colonisation of distinct niches during 624 

infection. For example, expression of P fimbriae in UPEC turns off type 1 fimbriae 625 

(negative cross-talk), while it sequentially turns on other P-related fimbrial operons 626 

(positive cross-talk) [72]. 627 

 628 

• Regulatory cross-talk also takes place between CU fimbriae and other surface 629 

organelles of UPEC, such as flagella, capsule and the autotransporter protein antigen 43.  630 

  631 
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BOX 2 632 

Innate pattern recognition events involving multiple TLR signalling pathways are 633 

associated with susceptibility and resistance to bacterial UTI. 634 

 635 

• Single-nucleotide polymorphisms (SNPs) in PRR genes are associated with UTI. 636 

Examples: a TLR1_G1805T SNP with protection from pyelonephritis [73]; TLR2_R753Q 637 

[74] and TLR4_A896G SNPs with increased risk for UTI in children and women [75,76]; 638 

and a TLR5_C1174T SNP with recurrent UTI [73].  639 

 640 

• TLR4 promoter variants, which are linked to reduced expression of TLR4 and 641 

reduced innate immune responses, are associated with asymptomatic bacteriuria [77]. 642 

 643 

• Mice deficient in PRR genes reveal the functional inputs of TLRs for determining 644 

severity of UTI. Examples: TLR4 knockout (KO) mice develop asymptomatic bacteriuria 645 

instead of acute UTI [43]; TLR5 KO mice are highly susceptible to UPEC infection [78]; 646 

and TLR11 KO mice are more prone to upper UTI [79]. 647 

 648 

• Nucleic acid-sensing PRRs such as TLR9, TLR13, STING and AIM2 may have a 649 

role in UTI; these are activated by bacterial DNA/RNA [80,81].  650 

 651 

• Nucleotide-binding oligomerization domain-like receptors (NLRs) including NLRP1, 652 

NLRP3 and NLRC4 respond to pathogen products such as toxins (e.g. α-hemolysin) and 653 

flagellin [82], but their roles in UTI have not been analyzed.  654 

 655 
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