41 research outputs found

    Wavelet-Based Angiographic Reconstruction of Computed Tomography Perfusion Data Diagnostic Value in Cerebral Venous Sinus Thrombosis

    Get PDF
    Objective: The aim of this study was to test the diagnostic value of wavelet-based angiographic reconstruction of CT perfusion data (waveletCTA) to detect cerebral venous sinus thrombosis (CVST) in patients who underwent whole-brain CT perfusion imaging (WB-CTP). Materials and Methods: Datasets were retrospectively selected from an initial cohort of 2863 consecutive patients who had undergone multiparametric CT including WB-CTP. WaveletCTA was reconstructed from WB-CTP: the angiographic signal was generated by voxel-based wavelet transform of time attenuation curves (TACs) from WB-CTP raw data. In a preliminary clinical evaluation, waveletCTA was analyzed by 2 readers with respect to presence and location of CVST. Venous CT and MR angiography (venCTA/venMRA) served as reference standard. Diagnostic confidence for CVST detection and the quality of depiction for venous sections were evaluated on 5-point Likert scales. Thrombus extent was assessed by length measurements. The mean CT attenuation and waveletCTA signal of the thrombus and of flowing blood were quantified. Results: Sixteen patients were included: 10 patients with venCTA-/venMRAconfirmed CVST and 6 patients with arterial single-phase CT angiography (artCTA)-suspected but follow-up-excluded CVST. The reconstruction of waveletCTA was successful in all patients. Among the patients with confirmed CVST, waveletCTA correctly demonstrated presence, location, and extent of the thrombosis in 10/10 cases. In 6 patients with artCTA-suspected but follow-up-excluded CVST, waveletCTA correctly ruled out CVST in 5 patients. Reading waveletCTA in addition to artCTA significantly increased the diagnostic confidence concerning CVST compared with reading artCTA alone (4.4 vs 3.6, P = 0.044). The mean flowing blood-to-thrombus ratio was highest in waveletCTA, followed by venCTA and artCTA (146.2 vs 5.9 vs 2.6, each with P < 0.001). In waveletCTA, the venous sections were depicted better compared with artCTA (4.2 vs 2.6, P < 0.001), and equally well compared with venCTA/venMRA (4.2 vs 4.1, P = 0.374). Conclusions: WaveletCTA was technically feasible in CVST patients and reliably identified CVST in a preliminary clinical evaluation. WaveletCTA might serve as an additional reconstruction to rule out or incidentally detect CVST in patients who undergo WB-CTP

    Penumbra Pattern Assessment in Acute Stroke Patients: Comparison of Quantitative and Non-Quantitative Methods in Whole Brain CT Perfusion

    Get PDF
    Background and Purpose: While penumbra assessment has become an important part of the clinical decision making for acute stroke patients, there is a lack of studies measuring the reliability and reproducibility of defined assessment techniques in the clinical setting. Our aim was to determine reliability and reproducibility of different types of three-dimensional penumbra assessment methods in stroke patients who underwent whole brain CT perfusion imaging (WB-CTP). Materials and Methods: We included 29 patients with a confirmed MCA infarction who underwent initial WB-CTP with a scan coverage of 100 mm in the z-axis. Two blinded and experienced readers assessed the flow-volume-mismatch twice and in two quantitative ways: Performing a volumetric mismatch analysis using OsiriX imaging software (MMVOL) and visual estimation of mismatch (MMEST). Complementarily, the semiquantitative Alberta Stroke Programme Early CT Score for CT perfusion was used to define mismatch (MMASPECTS). A favorable penumbral pattern was defined by a mismatch of >= 30% in combination with a cerebral blood flow deficit of = 1, respectively. Inter-and intrareader agreement was determined by Kappa-values and ICCs. Results: Overall, MMVOL showed considerably higher inter-/intrareader agreement (ICCs: 0.751/0.843) compared to MMEST (0.292/0.749). In the subgroup of large (>= 50 mL) perfusion deficits, inter-and intrareader agreement of MMVOL was excellent (ICCs: 0.961/0.942), while MMEST interreader agreement was poor (0.415) and intrareader agreement was good (0.919). With respect to penumbra classification, MMVOL showed the highest agreement (interreader agreement: 25 agreements/4 non-agreements/kappa: 0.595;intrareader agreement 27/2/0.833), followed by MMEST (22/7/0.471;23/6/0.577), and MMASPECTS (18/11/0.133;21/8/0.340). Conclusion: The evaluated approach of volumetric mismatch assessment is superior to pure visual and ASPECTS penumbra pattern assessment in WB-CTP and helps to precisely judge the extent of 3-dimensional mismatch in acute stroke patients

    Non-Contrast-Enhanced MR Angiography at 3 Tesla in Patients with Advanced Peripheral Arterial Occlusive Disease

    Get PDF
    Purpose: The aim of this study was to assess the diagnostic performance of ECG-gated non-contrast-enhanced quiescent interval single-shot (QISS) magnetic resonance angiography at a magnetic field strength of 3 Tesla in patients with advanced peripheral arterial occlusive disease (PAOD). Method and Materials: A total of 21 consecutive patients with advanced PAOD (Fontaine stage IIb and higher) referred for peripheral magnetic resonance angiography (MRA) were included. Imaging was performed on a 3 T whole body MR. Image quality and stenosis diameter were evaluated in comparison to contrast-enhanced continuous table and TWIST MRA (CE-MRA) as standard of reference. QISS images were acquired with a thickness of 1.5 mm each (high-resolution QISS, HR-QISS). Two blinded readers rated the image quality and the degree of stenosis for both HR-QISS and CE-MRA in 26 predefined arterial vessel segments on 5-point Likert scales. Results: With CE-MRA as the reference standard, HR-QISS showed high sensitivity (94.1%),specificity (97.8%),positive (95.1%),and negative predictive value (97.2%) for the detection of significant (>= 50%) stenosis. Interreader agreement for stenosis assessment of both HR-QISS and CE-MRA was excellent (kappa-values of 0.951 and 0.962, respectively). As compared to CR-MRA, image quality of HR-QISS was significantly lower for the distal aorta, the femoral and iliac arteries (each with p<0.01),while no significant difference was found in the popliteal (p = 0.09) and lower leg arteries (p = 0.78). Conclusion: Non-enhanced ECG-gated HR-QISS performs very well in subjects with severe PAOD and is a good alternative for patients with a high risk of nephrogenic systemic fibrosis

    Early Imaging Prediction of Malignant Cerebellar Edema Development in Acute Ischemic Stroke

    Get PDF
    Background and Purpose-Malignant cerebellar edema (MCE) is a life-threatening complication of acute ischemic stroke that requires timely diagnosis and management. Aim of this study was to identify imaging predictors in initial multiparametric computed tomography (CT), including whole-brain CT perfusion (WB-CTP). Methods-We consecutively selected all subjects with cerebellar ischemic WB-CTP deficits and follow-up-confirmed cerebellar infarction from an initial cohort of 2635 patients who had undergone multiparametric CT because of suspected stroke. Follow-up imaging was assessed for the presence of MCE, measured using an established 10-point scale, of which scores >= 4 are considered malignant. Posterior circulation-Acute Stroke Prognosis Early CT Score (pc-ASPECTS) was determined to assess ischemic changes on noncontrast CT, CT angiography (CTA), and parametric WB-CTP maps (cerebellar blood flow [CBF];cerebellar blood volume;mean transit time;time to drain). Fisher's exact tests, Mann-Whitney U tests, and receiver operating characteristics analyses were performed for statistical analyses. Results-Out of a total of 51 patients who matched the inclusion criteria, 42 patients (82.4%) were categorized as MCE-and 9 (17.6%) as MCE+. MCE+ patients had larger CBF, cerebellar blood volume, mean transit time, and time to drain deficit volumes (all with P0.05). Receiver operating characteristics analyses yielded the largest area under the curve values for the prediction of MCE development for CBF (0.979) and cerebellar blood volume deficit volumes (0.956) and pc-ASPECTS on CBF (0.935), whereas pc-ASPECTS on noncontrast CT (0.648) and CTA (0.684) had less diagnostic value. The optimal cutoff value for CBF deficit volume was 22 mL, yielding 100% sensitivity and 90% specificity for MCE classification. Conclusions-WB-CTP provides added diagnostic value for the early identification of patients at risk for MCE development in acute cerebellar stroke

    Incremental Value of Computed Tomography Perfusion for Final Infarct Prediction in Acute Ischemic Cerebellar Stroke

    Get PDF
    Background The diagnosis of ischemic cerebellar stroke is challenging because of nonspecific symptoms and very limited accuracy of commonly applied computed tomography (CT) imaging. Advances in CT perfusion imaging provide increasing value in the detection of posterior circulation stroke, but the prognostic value remains unclear. We aimed to identify imaging parameters that predict morphologic outcome in cerebellar stroke patients using advanced CT including whole‐brain CT perfusion (WB‐CTP). Methods and Results We selected all subjects with cerebellar WB‐CTP perfusion deficits and follow‐up‐confirmed cerebellar infarction from a consecutive cohort with suspected stroke who underwent WB‐CTP. Posterior‐circulation‐Acute‐Stroke‐Prognosis‐Early‐CT‐Score (pc‐ASPECTS) was determined on noncontrast CT, CT angiography source images, and on parametric WB‐CTP maps. Cerebellar perfusion deficit volumes on all maps and the final infarction volume on follow‐up imaging were quantified. Uni‐ and multivariate regression analyses were performed. Sixty patients fulfilled the inclusion criteria. pc‐ASPECTS on CT angiography source images (ß, −9.239; 95% CI, −14.220 to −4.259; P0.05). Conclusions In contrast to noncontrast CT and CT angiography, WB‐CTP imaging contains prognostic information for morphologic outcome in patients with acute cerebellar stroke

    Crossed cerebellar diaschisis in acute ischemic stroke: Impact on morphologic and functional outcome

    Get PDF
    Crossed cerebellar diaschisis (CCD) is the phenomenon of hypoperfusion and hypometabolism of the contralateral cerebellar hemisphere caused by dysfunction of the related supratentorial region. Our aim was to analyze its influence on morphologic and functional outcome in acute ischemic stroke. Subjects with stroke caused by a large vessel occlusion of the anterior circulation were selected from an initial cohort of 1644 consecutive patients who underwent multiparametric CT including whole-brain CT perfusion. Two experienced readers evaluated the posterior fossa in terms of CCD absence (CCD-) or presence (CCD+). A total of 156 patients formed the study cohort with 102 patients (65.4%) categorized as CCD- and 54 (34.6%) as CCD+. In linear and logistic regression analyses, no significant association between CCD and final infarction volume (beta = -0.440, p = 0.972), discharge mRS2 (OR = 1.897, p = 0.320), or 90-day mRS <= 2 (OR = 0.531, p = 0.492) was detected. CCD+ patients had larger supratentorial cerebral blood flow deficits (median: 164 ml vs. 115 ml;p = 0.001) compared to CCD-patients. Regarding complications, CCD was associated with a higher rate of parenchymal hematomas (OR = 4.793, p = 0.035). In conclusion, CCD is frequently encountered in acute ischemic stroke caused by large vessel occlusion of the anterior circulation. CCD was associated with the occurrence of parenchymal hematoma in the ipsilateral cerebral infarction but did not prove to significantly influence patient outcome

    Diagnostic yield and accuracy of coronary CT angiography after abnormal nuclear myocardial perfusion imaging

    Get PDF
    We aimed to determine the diagnostic yield and accuracy of coronary CT angiography (CCTA) in patients referred for invasive coronary angiography (ICA) based on clinical concern for coronary artery disease (CAD) and an abnormal nuclear stress myocardial perfusion imaging (MPI) study. We enrolled 100 patients (84 male, mean age 59.6 +/- 8.9 years) with an abnormal MPI study and subsequent referral for ICA. Each patient underwent CCTA prior to ICA. We analyzed the prevalence of potentially obstructive CAD (>= 50% stenosis) on CCTA and calculated the diagnostic accuracy of >= 50% stenosis on CCTA for the detection of clinically significant CAD on ICA (defined as any >= 70% stenosis or >= 50% left main stenosis). On CCTA, 54 patients had at least one >= 50% stenosis. With ICA, 45 patients demonstrated clinically significant CAD. A positive CCTA had 100% sensitivity and 84% specificity with a 100% negative predictive value and 83% positive predictive value for clinically significant CAD on a per patient basis in MPI positive symptomatic patients. In conclusion, almost half (48%) of patients with suspected CAD and an abnormal MPI study demonstrate no obstructive CAD on CCTA

    Computed tomography hypoperfusion-hypodensity mismatch vs. automated perfusion mismatch to identify stroke patients eligible for thrombolysis

    Get PDF
    Background and purposeAutomated perfusion imaging can detect stroke patients with unknown time of symptom onset who are eligible for thrombolysis. However, the availability of this technique is limited. We, therefore, established the novel concept of computed tomography (CT) hypoperfusion-hypodensity mismatch, i.e., an ischemic core lesion visible on cerebral perfusion CT without visible hypodensity in the corresponding native cerebral CT. We compared both methods regarding their accuracy in identifying patients suitable for thrombolysis.MethodsIn a retrospective analysis of the MissPerfeCT observational cohort study, patients were classified as suitable or not for thrombolysis based on established time window and imaging criteria. We calculated predictive values for hypoperfusion-hypodensity mismatch and automated perfusion imaging to compare accuracy in the identification of patients suitable for thrombolysis.ResultsOf 247 patients, 219 (88.7%) were eligible for thrombolysis and 28 (11.3%) were not eligible for thrombolysis. Of 197 patients who were within 4.5 h of symptom onset, 190 (96.4%) were identified by hypoperfusion-hypodensity mismatch and 88 (44.7%) by automated perfusion mismatch (p &lt; 0.001). Of 22 patients who were beyond 4.5 h of symptom onset but were eligible for thrombolysis, 5 patients (22.7%) were identified by hypoperfusion-hypodensity mismatch. Predictive values for the hypoperfusion-hypodensity mismatch vs. automated perfusion mismatch were as follows: sensitivity, 89.0% vs. 50.2%; specificity, 71.4% vs. 100.0%; positive predictive value, 96.1% vs. 100.0%; and negative predictive value, 45.5% vs. 20.4%.ConclusionThe novel method of hypoperfusion-hypodensity mismatch can identify patients suitable for thrombolysis with higher sensitivity and lower specificity than established techniques. Using this simple method might therefore increase the proportion of patients treated with thrombolysis without the use of special automated software.The MissPerfeCT study is a retrospective observational multicenter cohort study and is registered with clinicaltrials.gov (NCT04277728)
    corecore