
Original Article

Crossed cerebellar diaschisis
in acute ischemic stroke: Impact on
morphologic and functional outcome
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Abstract

Crossed cerebellar diaschisis (CCD) is the phenomenon of hypoperfusion and hypometabolism of the contralateral

cerebellar hemisphere caused by dysfunction of the related supratentorial region. Our aim was to analyze its influence on

morphologic and functional outcome in acute ischemic stroke. Subjects with stroke caused by a large vessel occlusion of

the anterior circulation were selected from an initial cohort of 1644 consecutive patients who underwent multipara-

metric CT including whole-brain CT perfusion. Two experienced readers evaluated the posterior fossa in terms of CCD

absence (CCD�) or presence (CCDþ). A total of 156 patients formed the study cohort with 102 patients (65.4%)

categorized as CCD� and 54 (34.6%) as CCDþ. In linear and logistic regression analyses, no significant association

between CCD and final infarction volume (�¼�0.440, p¼ 0.972), discharge mRS� 2 (OR¼ 1.897, p¼ 0.320), or 90-day

mRS� 2 (OR¼ 0.531, p¼ 0.492) was detected. CCDþ patients had larger supratentorial cerebral blood flow deficits

(median: 164 ml vs. 115 ml; p¼ 0.001) compared to CCD�patients. Regarding complications, CCD was associated with a

higher rate of parenchymal hematomas (OR¼ 4.793, p¼ 0.035). In conclusion, CCD is frequently encountered in acute

ischemic stroke caused by large vessel occlusion of the anterior circulation. CCD was associated with the occurrence of

parenchymal hematoma in the ipsilateral cerebral infarction but did not prove to significantly influence patient outcome.
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Introduction

Crossed cerebellar diaschisis (CCD) is the phenomenon
of a decreased cerebellar perfusion and glucose metab-
olism secondary to a supratentorial malfunction of
brain tissue in the contralateral hemisphere, first
described by Baron et al.1–3 It can be detected through
changes in electrical activity, cerebral blood flow, or
cerebral metabolic rates for glucose and oxygen using
methods such as electroencephalography, single-
photon emission-computed tomography (SPECT), or
positron emission tomography (PET).4,5 CCD has
been reported in supratentorial tumors,6 epilepsy,7

encephalitis,8 and cerebral infarction.9 Animal studies
suggest that CCD is explained by deactivation of

cerebellar neurons caused by reduction of excitatory
impulses via the corticopontocerebellar tract.5,10 In
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ischemic stroke, CCD has been observed during the
acute, subacute, and chronic phase.11,12 Current scien-
tific concepts attribute acute CCD to functional neur-
onal deafferentiation, whereas chronic CCD probably
reflects a state of transneuronal degeneration.13 In
ischemic stroke due to large anterior circulation vessel
occlusion, CCD has been shown to be present in about
one-third of the affected patients in the acute phase.14,15

While the original definition of CCD was based on
the idea that it is a transient condition,16 several publi-
cations have reported CCD up to decades after the
index stroke.17–20 Regarding the reversibility of CCD,
however, several serial SPECT and PET studies demon-
strated that some patients show complete reversal of
CCD during follow-up.11,13,21–23 With respect to func-
tional outcome, the majority of studies in stroke
patients using SPECT or PET investigated subacute
and chronic CCD, reflecting the fact that these imaging
methods are not eligible to routinely assess perfusion in
the acute stroke setting. Several studies with relatively
small sample sizes report correlations with clinical
severity scales for subacute11,13,24,25 and chronic
CCD.26,27 Yet, the two largest studies on subacute
CCD report no independent predictive value after stat-
istical correction for the infarct hypoperfusion
volume.28,29 For acute CCD, no correlations to clinical
severity scales were established so far.11,25,26 However,
current sample sizes are too small to draw general con-
clusions regarding its clinical impact.

Unlike SPECT and PET, computed tomography
perfusion imaging is a method that reliably demon-
strates areas of hypoperfusion in clinical routine
stroke workup.30 Advances in imaging technology
meanwhile allow to cover the entire brain tissue at a
reasonable radiation dose (whole-brain CT perfusion,
WB-CTP).31 While recent WB-CTP studies on stroke
patients have shown the occurrence of CCD in the
acute phase to be dependent on the location of the
supratentorial perfusion deficit and the severity of
supratentorial hypoperfusion,14 the key question of
the clinical impact of CCD in acute ischemic stroke
remains unanswered.

Therefore, the aim of the present whole-brain CT
perfusion study was to determine the influence of
CCD occurrence in the acute phase on morphologic
and functional outcome in patients with acute ischemic
stroke due to large anterior circulation vessel occlusion.

Material and methods

Study design and population

The institutional review board of the LMU Munich
(Ethikkommission der Medizinischen Fakultät der
Ludwig-Maximilians-Universität München) approved

this retrospective study according to the Helsinki
Declaration of 1975 (and as revised in 2013) and
waived requirement for informed consent. Our initial
cohort consisted of 1644 consecutive patients who had
undergone WB-CTP due to suspected stroke between
April 2009 and June 2014.

Out of this cohort, we included all subjects with

(1) occlusion of the internal carotid (ICA), carotid T
and/or middle cerebral artery (MCA),

(2) perfusion deficit in the MCA territory on WB-CTP,
and

(3) follow-up confirmed ischemic infarction.

We excluded patients with

(1) any abnormality of the posterior vasculature on CT
angiography (CTA),

(2) cerebellar infarction or other cerebellar pathology
on initial or follow-up imaging,

(3) missing follow-up imaging, or
(4) incomplete coverage of the cerebellum or non-diag-

nostic quality of WB-CTP.

Out of the initial 1644 patients, 323 patients had an
ICA, carotid T, or MCA occlusion. Out of these, 20
patients with missing follow-up imaging, 89 with
abnormalities of the posterior circulation, 14 with
pathologies of the cerebellum, 6 with acute cerebellar
infarction on follow-up imaging and 38 with incom-
plete cerebellar coverage or non-diagnostic quality of
WB-CTP were excluded. The remaining 156 patients
formed the final study population.

CT acquisition, CT perfusion processing
and follow-up imaging

All patients underwent a standardized multiparametric
CT protocol consisting of non-enhanced CT (NECT),
single-phase CT angiography (spCTA), and WB-CTP.
The acquisition protocol has been described in detail
before.32 The source image processing was performed
with SYNGO Volume Perfusion CT Neuro software
using a semi-automated deconvolution algorithm (Auto
Stroke MTT) on a dedicated workstation (Syngo
MMWP, VA 21A; Siemens Healthcare, Erlangen,
Germany). A series of 31 color-coded slices was gener-
ated for each of the hemodynamic parameters cerebral
blood flow (CBF), cerebral blood volume (CBV), mean
transit time (MTT), time to drain (TTD), and time to
peak (TTP). Follow-up imaging was performed with
MRI in 56% and NECT in 44% of patients as previously
described.14 The median time from initial WB-CTP ima-
ging to follow-up imaging was two days for MRI (range:
1–49) and one day for NECT (range: 1–16).
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Image analysis

The assessment of presence of CCD was performed
qualitatively by two independent readers (one neurolo-
gist with nine years and one radiologist with seven years
of experience in CTP reading, respectively) blinded to
all clinical data and the location of supratentorial
infarctions by cropping all images to the posterior
fossa. In case of disagreement, a consensus was reached
in a separate session. Only perfusion anomalies in the
cerebellar hemisphere contralateral to the supratentor-
ial lesion were counted as CCD positive. Figure 1
shows representative examples of CCD� and CCDþ
patients.

The extent of the supratentorial ischemic region was
assessed on NECT using the semi-quantitative Alberta
Stroke Program Early Computed Tomography Score
(ASPECTS).33 CBF and CBV deficit volume and final
infarction volume were determined as previously
described.31 The primary morphologic outcome param-
eter was final infarction volume. As secondary morpho-
logic outcome, we determined parameters that
represent the morphologic course from ischemia to
infarction using an approach comparable to previous

studies.34–37 To quantify the change from the initial
hemodynamic impairment to the final infarcted tissue,
we used the following calculated parameters as surro-
gates: [final infarction volume/CBF deficit volume],
[final infarction volume/(CBF deficit volume – CBV
deficit volume)], and [CBF deficit volume – final infarc-
tion volume]. The rationale of these parameters is
illustrated in supplementary Figure 1. All available
follow-up imaging prior to discharge was assessed for
subacute stroke complications. Hemorrhagic infarction
and parenchymal hematoma were categorized as type I
and II according to the European Cooperative Acute
Stroke Study (ECASS) criteria.38 Parenchymal hema-
toma type II development has a negative influence on
functional outcome.39 Intracranial hemorrhage (ICH)
remote to the infarction area was classified as extrais-
chemic. The presence of space-occupying edema was
defined as previously described and assessed using
follow-up NECT on day 3� 2.40

Acute stroke therapy

Intravenous thrombolysis (IVT) was administered to
eligible patients at a dose of 0.9mg/kg bodyweight

Figure 1. Examples of CCD� and CCDþ patients. Patient examples of acute ischemic stroke without and with signs of crossed

cerebellar diaschisis (CCD). NECT, supratentorial CBF map, infratentorial CBF and MTT map, and follow-up DWI are depicted from

for a CCD� (a) and a CCDþ patient (b). NECT: non-enhanced CT; CBF: cerebral blood flow; MTT; mean transit time; DWI:

diffusion-weighted imaging.
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(maximum dose: 90mg) in two parts: 10% of the total
dose was administered as an IV bolus, immediately fol-
lowed by an IV infusion over 60min of the remaining
dose diluted in 50ml of sodium chloride 0.9%. IVT was
started approximately 10–20min after imaging evalu-
ation, i.e. time from symptom onset plus 10–20min.
If IVT was given, preexisting antiplatelet or anticoagu-
lation therapy was halted for 24 h.

Endovascular therapy (EVT) was performed as a
mechanical stent retriever thrombectomy procedure
either under general anesthesia or, whenever deemed
appropriate by the interventional neuroradiologist
and the anesthesiologist, under conscious sedation.
All procedures were performed in a triaxial fashion
using a distal access catheter and a microcatheter to
deploy a stent retriever device. All used stent retrievers
in this cohort were latest generation devices (Solitaire,
ev3 Neurovascular, Irvine, CA, USA; Preset, phenox
GmbH, Bochum, Germany; Trevo, Concentric
Medical, Mountain View, CA, USA). After affirmation
of recanalization, the catheter material was removed.

In general, therapy with aspirin (100mg/day) was
initiated immediately after admission to the stroke
unit. Exclusion criteria were intracerebral hemorrhage
and IVT administration. In case of IVT, aspirin therapy
was suspended for at least 24 h and initiated only after
repeated imaging to exclude IVT-related hemorrhage.
In case of cardioembolic stroke, the decision to start
anticoagulation was made individually depending on
the size of infarction.

Functional outcome data

The functional outcome evaluation in this study was
based on the National Institutes of Health Stroke
Scale (NIHSS) score41 determined on admission and
the modified Rankin Scale (mRS) score42 assessed on
admission, on discharge and 90 days after the stroke
event. Furthermore, the premorbid mRS score repre-
senting patient disability prior to the current stroke
event was estimated by taking detailed medical
history of the patient whenever possible. Patients
were excluded from the functional outcome analysis
in case of premorbid mRS> 1, missing clinical docu-
mentation, second stroke event, or death to other
cause within 90 days. None of the included patients
had a history of premorbid ischemic injury to the ipsi-
lateral MCA territory. Detailed characteristics of
excluded patients are provided in supplementary
Table 1.

Statistical analysis

We performed all statistical analyses using SPSS
Statistics 23 (IBM, Armonk/NY, USA). Normal

distribution was evaluated using the Kolmogorov–
Smirnov test. In case of non-normal distribution, we
applied the Chi-squared test for categorical and the
Mann–Whitney-U test for continuous variables to
identify significant differences between patients classi-
fied as CCDþ and CCD�. Univariate linear regression
analysis was used to test the association between pre-
dictors and continuous morphologic outcome vari-
ables. Logistic binary regression analysis was used
between predictors and the categorical functional out-
come variables. All metric and normally distributed
variables are reported as mean� standard deviation;
non-normally distributed variables are presented as
median (interquartile range). Categorical variables are
presented as frequency and percentage. P values below
0.05 were considered to indicate statistical significance.

Results

Patient characteristics

A total of 156 patients were included for WB-CTP
reading and statistical analysis. Mean age was 73
years (IQR: 58–82). Sixty-nine (44%) patients were
male. Out of the 156 evaluated patients, 102 were clas-
sified CCD negative (65.4%), and 54 (34.6%) CCD
positive. CCDþ patients showed significantly larger
supratentorial CBF and CBV deficit volumes compared
to CCD� patients (each with p< 0.001). No statistic-
ally significant differences between these two groups
were found in terms of time from symptom onset,
NIHSS on admission, ASPECTS, final infarction
volume, cardiovascular risk factors or etiology of
stroke (each with p> 0.05). Simply comparing the two
groups, CCDþ patients had worse discharge mRS
scores (p¼ 0.008). Detailed characteristics of CCDþ
and CCD� patients are shown in Table 1.

Association of CCD with morphologic outcome

For the analysis of morphologic outcome, all 156
patients were included. In the linear regression analysis,
no statistically significant associations were evident
between the presence of CCD and any of the morpho-
logic outcome parameters (each with p> 0.05). Results
are shown in Table 2. Additional per-patient plots of
CBF deficit and final infarction volume stratified for
treatment groups and CCD status are provided in sup-
plementary Figure 2.

Association of CCD with functional outcome

According to our exclusion criteria for the analysis of
functional outcome, we excluded patients with premor-
bid mRS> 1 (N¼ 16), missing documentation (N¼ 5),
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Table 1. Characteristics of CCD� and CCDþ acute ischemic stroke patients.

Overall (N¼ 156) CCD� (n¼ 102) CCDþ (n¼ 54) p

Patient data

Age 73 (58–82) 72 (55–81) 74 (67–82) 0.069

Male sex 69 (44.2%) 45 (44.1%) 24 (44.4%) 0.969

Time from symptom onset 153 (103–282) 164 (103–301) 147 (98–268) 0.658

NIHSS on admission 14 (9–17) 13 (8–16) 15 (11–17) 0.108

Treatment

IV thrombolysis 102 (66.7%) 64 (64.6%) 38 (70.4%) 0.473

Endovascular therapy 57 (37.3%) 37 (37.4%) 20 (37.0%) 0.996

Imaging

ASPECTS 9 (7–10) 9 (7–10) 9 (7–9) 0.163

Occluded vessels

ICA 57 (36.5%) 39 (38.2%) 18 (33.3%) 0.545

Carotid T 13 (8.3%) 9 (8.8%) 4 (7.4%) 0.761

M1 segment of MCA 87 (55.8%) 55 (53.9%) 32 (59.3%) 0.523

M2 segment of MCA 35 (22.4%) 23 (22.5%) 12 (22.2%) 0.963

M3 segment of MCA 6 (3.8%) 4 (3.9%) 2 (3.7%) 0.946

CBF deficit volume 133 (86–191) 115 (67–181) 164 (123–205) 0.001

CBV deficit volume 43 (12–87) 25 (8–83) 50 (28–95) 0.007

CBF-CBV mismatch % 65 (39–85) 65 (39–89) 64 (42–79) 0.456

Final infarction volume 33 (10–85) 23 (7–83) 53 (12–122) 0.106

Functional outcome

Premorbid mRS 0 (0–0) 0 (0–0) 0 (0–0) 0.936

Admission mRS 5 (4–5) 5 (4–5) 5 (4–5) 0.762

Discharge mRS 4 (3–5) 4 (2–5) 5 (4–5) 0.008

90-day mRS 4 (1–6) 3 (1–5) 4 (3–6) 0.183

Cardiovascular risk factors

Hypertension 105 (70.0%) 66 (68.0%) 39 (73.6%) 0.479

Atrial fibrillation 73 (48.7%) 45 (46.4%) 28 (52.8%) 0.451

Diabetes mellitus 27 (18.0%) 14 (14.4%) 13 (24.5%) 0.124

Smoking 38 (25.3%) 26 (26.8%) 12 (22.6%) 0.575

Hypercholesteremia 48 (32.0%) 29 (29.9%) 19 (35.8%) 0.455

Etiology of stroke

Cardioembolic 80 (53.3%) 49 (50.5%) 31 (58.5%) 0.349

Arterio-arterial 38 (25.3%) 24 (24.7%) 14 (26.4%) 0.822

Other 17 (11.3%) 14 (14.4%) 3 (5.7%) 0.105

Unknown 17 (11.3%) 10 (10.3%) 7 (13.2%) 0.592

Complications

Hemorrhagic infarction 0.363

Type 1 26 (16.7%) 14 (13.7%) 12 (22.2%)

Type 2 18 (11.5%) 13 (12.7%) 5 (9.3%)

Parenchymal hematoma 0.026

Type 1 12 (7.7%) 5 (4.9%) 7 (13.0%)

Type 2 2 (1.3%) 0 (0.0%) 2 (3.7%)

Extraischemic ICH 9 (5.8%) 6 (5.9%) 3 (5.6%) 0.934

Space-occupying edema 30 (19.2%) 19 (18.6%) 11 (20.4%) 0.793

CCD: crossed cerebellar diaschisis; NIHSS: national institutes of health stroke scale; ASPECTS: Alberta stroke program early CT score; ICA: internal

carotid artery; MCA: middle cerebral artery; CBF/CBV: cerebral blood flow/volume; mRS: modified Rankin Scale; ICH: intracranial hemorrhage. Note:

Values presented are count (percentage) for categorical and median (interquartile range) for ordinal or continuous variables. Proportion analysis tests

for categorical variables were performed using the �2 test. Nonparametric tests for non-normally distributed continuous variables were performed

using the Mann–Whitney U test, and for ordinal variables using the independent samples median test. Time parameters are measured in minutes;

volume parameters are measured in mL. Bold p values indicate statistical significance.
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second stroke events within 90 days (N¼ 2), and death
to non-stroke-related causes within 90 days (N¼ 2).
A flow chart of the patient selection is presented in
Figure 2. Bar graphs representing admission, discharge,
and 90-day mRS scales are shown in Figure 3.

In the binary logistic regression analysis, no statis-
tically significant associations between CCD and func-
tional outcome parameters were evident (each with
p> 0.05). Higher NIHSS scores on admission and
larger final infarction volume had significant negative
associations with favorable outcome parameters, and
the administration of IV thrombolysis had a significant
positive association with favorable discharge mRS.
Results are presented in Table 2. Additional per-patient

mRS data plots stratified for treatment groups and
CCD status are provided in supplementary Figure 3.

Association of CCD with subacute stroke
complications

In the binary logistic regression analysis, the occurrence
of parenchymal hematoma showed a significant associ-
ation with the presence of CCD. CCD was not asso-
ciated with the occurrence of hemorrhagic infarction,
extraischemic intracranial hemorrhage, or the develop-
ment of space-occupying edema. The results are pre-
sented in Table 3. The results from a regression
analysis for parenchymal hematoma development

Table 2. Predictors of morphologic and functional outcome.

Morphologic outcome Final infarctiona
Final infarction/

CBF deficita
Final infarction/

Penumbraa,b
CBF deficit –

Final infarctiona

Independent variables � p � p � p � p

Age �0.660 0.116 �0.002 0.593 �0.059 0.018 0.660 0.116

Sex 3.331 0.787 0.011 0.931 0.651 0.373 �3.331 0.787

NIHSS on admission 2.127 0.032 0.011 0.295 0.012 0.843 �2.127 0.032

ASPECTS �6.410 0.061 �0.037 0.298 �0.137 0.496 6.410 0.061

CBF deficit volume �0.214 0.162 �0.003 0.054 �0.012 0.192 1.214 <0.001

CBV deficit volume 1.410 <0.001 0.001 0.748 0.018 0.309 �1.410 <0.001

CBF-CBV mismatch % 0.795 0.125 �0.008 0.119 �0.061 0.048 �0.795 0.125

IV thrombolysis 9.815 0.440 �0.017 0.895 1.186 0.116 �9.815 0.440

Endovascular therapy �48.198 <0.001 �0.202 0.090 �1.301 0.054 48.198 <0.001

CCD �0.440 0.972 0.004 0.975 �0.437 0.552 0.440 0.972

Functional outcome Admission

mRS� 2c
Discharge

mRS� 2c
Discharge

mRS� 4c
90-day

mRS� 2c

Independent variables OR p OR p OR p OR p

Age 1.046 0.303 0.966 0.070 0.997 0.880 0.963 0.269

Sex 0.167 0.244 0.402 0.098 0.546 0.224 0.630 0.553

NIHSS on admission 0.438 0.008 0.823 0.003 0.905 0.033 0.782 0.041

ASPECTS 0.557 0.394 1.009 0.963 0.825 0.204 0.960 0.917

CBF deficit volume 0.983 0.321 0.998 0.761 0.995 0.441 1.009 0.462

CBV deficit volume 1.070 0.145 0.978 0.243 0.989 0.459 0.983 0.564

CBF-CBV mismatch % 1.099 0.152 0.961 0.114 0.997 0.878 0.987 0.756

Final infarction volume 0.981 0.285 0.983 0.059 0.990 0.022 0.895 0.026

IV thrombolysis 2.207 0.615 10.400 0.003 1.704 0.327 1.512 0.662

Endovascular therapy 3.080 0.507 0.426 0.120 1.086 0.857 1.300 0.748

CCD 1.703 0.789 1.897 0.320 0.611 0.313 0.531 0.492

aAll parameters represent volumetric measures.
bPenumbra is defined as CBF deficit volume – CBV deficit volume.
cAvailable data: Admission mRS 131/131, Discharge mRS 131/131, 90-day mRS 72/131.

mRS: modified Rankin Scale; NIHSS: national institutes of health stroke scale; ASPECTS: Alberta stroke program early CT score; CBF / CBV: cerebral

blood flow/volume; OR: odds ratio. Note: A univariate linear regression analysis was performed for the indicated morphologic outcome parameters

for the complete study population of 156 patients. A binary logistic regression analysis was performed for the indicated functional outcome parameters

for the patient selection according to Figure 2. Bold p values indicate statistical significance.
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which additionally incorporates further quantitative
CT perfusion parameters are provided in supplemen-
tary Table 2.

Discussion

In our study on patients with acute ischemic stroke due
to an anterior circulation occlusion, the presence of
CCD as assessed by WB-CTP in the acute phase
showed no independent association with morphologic
and functional patient outcome. Among the most
common complications after acute ischemic stroke,
the occurrence of parenchymal hematoma was asso-
ciated with the presence of CCD.

CCD in the setting of ischemic stroke has mainly been
studied in the subacute and chronic phase25,28,29.
Although only few studies compared the phase-specific
clinical implications of CCD,25 the results suggest a
negative impact of subacute and chronic CCD, but not
acute CCD, on functional outcome.11,26 As possible
associations between the presence of CCD with both
functional outcome and complications in acute ischemic
stroke are controversial,28,29 our study makes an import-
ant contribution to the significance of CCD as it is the
first CT perfusion study on the clinical impact of acute
CCD. Recent studies on CCD occurrence and perfusion
characteristics suggest that CT perfusion is an appropri-
ate technique to study the phenomenon of CCD.14,15

Patients with
Premorbid mRS ≤ 1

N = 140

Acute Anterior Circulation
Stroke caused by ICA,

Carotid T or MCA Occlusion

N = 156

Excluded:

N = 16 Patients with Premorbid mRS > 1

Excluded:

N = 5 Missing Clinical Documentation

N = 2 Second Stroke Event within 90 days

N = 2 Death to Other Cause within 90 days
Patients Included in

Clinical Outcome Analysis

N = 131

Figure 2. Flow chart of patient selection for functional outcome analysis.

ICA: internal carotid artery; MCA: middle cerebral artery; mRS: modified Rankin Scale.

Figure 3. Modified Rankin Scale scores of CCD� and CCDþ patients.

CCD: crossed cerebellar diaschisis; mRS: modified Rankin Scale.

Kunz et al. 3621



Building on this, we could show that the mere pres-
ence of CCD in the acute phase has no impact on func-
tional outcome in ischemic stroke patients. The original
notion of diaschisis being a reversible condition, either
in the form of CCD or transhemispheric diaschisis,43 is
not contradicted by our observations as significant clin-
ical improvement was observed in patients with acute
CCD. Animal studies of transhemispheric diaschisis
have proven reversibility of the acute flow alterations
in the subacute phase of stroke. However, as WB-CTP
is not established as a method of follow-up imaging due
to reasons of radiation hygiene, our study cannot val-
idate the reversibility of CCD in these clinically
improved patients. Still, our results support previous
reports suggesting that rather chronic than acute
CCD is associated with irrevocable brain degener-
ation17,28 and impaired neurologic function.25 The dif-
ferences, however, might also be partially influenced
due to other imaging techniques and inclusion criteria.

In contrast to functional patient outcome and final
infarction volume, the occurrence of parenchymal
hematoma was associated with the presence of CCD.
As opposed to hemorrhagic infarction, parenchymal
hematoma (in particular type II) has been shown to
impair patient outcomes.39 Besides IV thrombolysis,
risk factors for parenchymal hematoma development
are early ischemic changes,44 prior medication with
anticoagulants,45 severe leukoaraiosis,46 decreased cere-
bral blood flow, and increased blood-brain barrier
permeability.47–52 However, we only observed a non-
significant trend for IV thrombolysis treatment towards
parenchymal hematoma development. This might be
explained by the sample size, the inclusion criteria,
and/or by clinical patient selection for IVT. From a

pathophysiologic point of view, we could not establish
an explanation linking CCD with parenchymal hema-
toma development. Neither size nor severity of the
acute ischemic injury had an independent influence in
our study population. Yet, after further clinical valid-
ation, CCD could potentially serve as a quickly identi-
fiable prognostic parameter in routine clinical stroke
work-up.

Similar to the impact of CCD on patient outcome
measures, factors influencing occurrence and severity of
CCD are controversial. In line with previous stu-
dies,9,11,28,29 we found a significant positive association
between the size of the supratentorial perfusion deficit
and CCD occurrence. It is important to note, however,
that the final infarction volume was not associated with
CCD. This result fits well with the missing association
between CCD and functional outcome and with the
proposed notion that acute CCD is a temporary and
potentially reversible condition.

Our data must be interpreted in the context of the
study design. As a first limitation, the most commonly
used functional outcome measure, mRS at 90 days, was
not available for all patients. Due to missing associ-
ations of CCD with other outcome measures that
were fully available to us (discharge mRS, final infarc-
tion volume), we however expect that our results can be
confirmed in larger prospective study cohorts. Second,
the study was conducted in a retrospective fashion
which does not allow a sample size estimation and
power analysis. We would, however, like to point out
that the present study includes the largest number of
patients that were examined in the immediate stroke
situation, underscoring the clinical relevance of the
results. Finally, CCD presence was assessed

Table 3. Predictors of subacute stroke complications.

Hemorrhagic infarction Parenchymal hematoma Extraischemic ICH Space-occupying edema

Independent variables OR p OR p OR p OR p

Age 1.008 0.605 1.016 0.586 0.984 0.567 0.966 0.184

Sex 0.611 0.284 0.455 0.287 1.094 0.916 0.982 0.982

NIHSS on admission 1.095 0.023 1.024 0.703 1.047 0.539 1.146 0.059

ASPECTS 0.943 0.641 1.002 0.992 1.051 0.838 0.845 0.373

CBF deficit volume 1.001 0.907 1.001 0.934 0.989 0.358 0.970 0.046

CBV deficit volume 0.978 0.104 1.007 0.693 1.020 0.368 1.038 0.121

CBF-CBV mismatch % 0.969 0.129 1.005 0.877 1.028 0.434 1.035 0.309

Final infarction volume 1.009 0.006 0.998 0.659 1.002 0.780 1.021 <0.001

IV thrombolysis 2.096 0.174 1.869 0.484 4.123 0.239 0.217 0.059

Endovascular therapy 2.478 0.043 0.693 0.602 0.450 0.410 3.412 0.132

CCD 1.371 0.494 4.793 0.035 0.693 0.713 2.886 0.170

ICH: intracranial hemorrhage; NIHSS: national institutes of health stroke scale; ASPECTS: Alberta stroke program early CT score; CBF / CBV: cerebral

blood flow / volume; OR: odds ratio. Note: A binary logistic regression analysis was performed for the indicated complications for the patient selection

according to Figure 2. Bold p values indicate statistical significance.
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qualitatively in a dichotomized fashion, reflecting cur-
rent practice in the clinical routine. We cannot rule out
that a quantitative approach would lead to different
results.

In conclusion, our study suggests that the presence
of CCD in the acute phase has no significant impact on
functional outcome in patients with ischemic stroke.
The association between acute CCD and occurrence
of parenchymal hematoma, however, is a noteworthy
finding that warrants further research.
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