63 research outputs found

    Isolation and characterization of novel broad host range bacteriophages of Vibrio cholerae O1 from Bengal

    Get PDF
    Objectives: We have isolated a total of five newer cholera phages which are novel broad host range to incorporate with the existing phage typing schemes for an extended typing scheme. Materials and Methods: These newly isolated phages were well characterized including the electron micrograph. A total of 300 Vibrio cholerae strains were isolated from the different endemic region in India were included in phage typing study. Results: These phages were found different from the existing phages. Electron microscopic results showed that the phages belonged to myophage and podophage group. Characterization of the phages based on pH, temperature, and organic solvent sensitivity showed differences among the phages used in this study. All the strains of Vibrio O1 were typeable (100%) with the five set of cholera phages. Of these, 40% strains were clustered under Type-1. Conclusion: The newer Vibrio phages are novel and broad host range and will be useful to incorporate with the existing phage typing system for more precisely discriminate the strains of Vibrio cholerae

    Role of a sensor histidine kinase ChiS of Vibrio cholerae in pathogenesis

    Get PDF
    Vibrio cholera survival in an aquatic environment depends on chitin utilization pathway that requires two factors, chitin binding protein and chitinases. The chitinases and the chitin utilization pathway are regulated by a two-component sensor histidine kinase ChiS in V. cholerae. In recent studies these two factors are also shown to be involved in V. cholerae pathogenesis. However, the role played by their upstream regulator ChiS in pathogenesis is yet to be known. In this study, we investigated the activation of ChiS in presence of mucin and its functional role in pathogenesis. We found ChiS is activated in mucin supplemented media. The isogenic chiS mutant (ChiS-) showed less growth compared to the wild type strain (ChiS+) in the presence of mucin supplemented media. The ChiS- strain also showed highly retarded motility as well as mucin layer penetration in vitro. Our result also showed that ChiS was important for adherence and survival in HT-29 cell. These observations indicate that ChiS is activated in presence of intestinal mucin and subsequently switch on the chitin utilization pathway. In animal models, our results also supported the in vitro observation. We found reduced fluid accumulation and colonization during infection with ChiS- strain. We also found ChiS- mutant with reduced expression of ctxA, toxT and tcpA. The cumulative effect of these events made V. cholerae ChiS- strain hypovirulent. Hence, we propose that ChiS plays a vital role in V. cholerae pathogenesis

    Inflammatory diarrhea due to enteroaggregative Escherichia coli: evidence from clinical and mice model studies

    Get PDF
    Background  This study was conducted to determine the role of enteroaggregative Escherichia coli (EAEC) in inflammatory diarrhea among hospitalized patients in Kolkata. The inflammatory pathogenesis of EAEC was established in mice model and histopathological studies. Presence of fecal leucocytes (FLCs) can be suspected for EAEC infection solely or as a mixed with other enteric pathogens.  Methods  Active surveillance was conducted for 2 years on 2 random days per week with every 5th patient admitted to the Infectious Diseases Hospital (IDH). Diarrheal samples were processed by conventional culture, microscopy, ELISA and molecular methods. Two EAEC isolated as sole pathogens were examined in mice after induced intestinal infection. The intestinal tissue samples were processed to analyze the histological changes.  Results  Of the 2519 samples screened, fecal leucocytes, erythrocytes and occult blood were detected in 1629 samples. Most of the patients had acute watery diarrhea (75%) and vomiting (78%). Vibrio cholerae O1 was the main pathogen in patients of 5–10 years age group (33%). Shigellosis was more in children from 2–5 years of age (19%), whereas children <2 years appeared to be susceptible for infection caused by EAEC (16%). When tested for the pathogenicity, the EAEC strains colonized well and caused inflammatory infection in the gut mucosa of BALB/C mice.  Conclusion  This hospital-based surveillance revealed prevalence of large number of inflammatory diarrhea. EAEC was the suspected pathogen and <2 years children appeared to be the most susceptible age group. BALB/C mice may be a suitable animal model to study the EAEC-mediated pathogenesis

    Studies on a Novel Serine Protease of a ΔhapAΔprtV Vibrio cholerae O1 Strain and Its Role in Hemorrhagic Response in the Rabbit Ileal Loop Model

    Get PDF
    BACKGROUND: Two well-characterized proteases secreted by Vibrio cholerae O1 strains are hemagglutinin protease (HAP) and V. cholerae protease (PrtV). The hapA and prtV knock out mutant, V. cholerae O1 strain CHA6.8ΔprtV, still retains residual protease activity. We initiated this study to characterize the protease present in CHA6.8ΔprtV strain and study its role in pathogenesis in rabbit ileal loop model (RIL). METHODOLOGY/PRINCIPAL FINDINGS: We partially purified the residual protease secreted by strain CHA6.8ΔprtV from culture supernatant by anion-exchange chromatography. The major protein band in native PAGE was identified by MS peptide mapping and sequence analysis showed homology with a 59-kDa trypsin-like serine protease encoded by VC1649. The protease activity was partially inhibited by 25 mM PMSF and 10 mM EDTA and completely inhibited by EDTA and PMSF together. RIL assay with culture supernatants of strains C6709 (FA ratio 1.1+/-0.3 n = 3), CHA6.8 (FA ratio 1.08+/-0.2 n = 3), CHA6.8ΔprtV (FA ratio 1.02+/-0.2 n = 3) and partially purified serine protease from CHA6.8ΔprtV (FA ratio 1.2+/-0.3 n = 3) induced fluid accumulation and histopathological studies on rabbit ileum showed destruction of the villus structure with hemorrhage in all layers of the mucosa. RIL assay with culture supernatant of CHA6.8ΔprtVΔVC1649 strain (FA ratio 0.11+/-0.005 n = 3) and with protease incubated with PMSF and EDTA (FA ratio 0.3+/-0.05 n = 3) induced a significantly reduced FA ratio with almost complete normal villus structure. CONCLUSION: Our results show the presence of a novel 59-kDa serine protease in a ΔhapAΔprtV V. cholerae O1 strain and its role in hemorrhagic response in RIL model

    Virulence of Cholera Toxin Gene-Positive Vibrio cholerae Non-O1/non-O139 Strains Isolated From Environmental Water in Kolkata, India

    Get PDF
    Cholera toxin (CT)-producing Vibrio cholerae O1 and O139 cause acute diarrheal disease and are proven etiological agents of cholera epidemics and pandemics. On the other hand, V. cholerae non-O1/non-O139 are designated as non-agglutinable (NAG) vibrios and are not associated with epidemic cholera. The majority of NAG vibrios do not possess the gene for CT (ctx). In this study, we isolated three NAG strains (strains No. 1, 2, and 3) with ctx from pond water in Kolkata, India, and examined their pathogenic properties. The enterotoxicity of the three NAG strains in vivo was examined using the rabbit ileal intestinal loop test. Strain No. 1 induced the accumulation of fluid in the loop, and the volume of fluid was reduced by simultaneous administration of anti-CT antiserum into the loop. The volume of fluid in the loop caused by strains No. 2 and 3 was small and undetectable, respectively. Then, we cultured these three strains in liquid medium in vitro at two temperatures, 25 degrees C and 37 degrees C, and examined the amount of CT accumulated in the culture supernatant. CT was accumulated in the culture supernatant of strain No.1 when the strain was cultured at 25 degrees C, but that was low when cultured at 37 degrees C. The CT amount accumulated in the culture supernatants of the No. 2 and No. 3 strains was extremely low at both temperature under culture conditions examined. In order to clarify the virulence properties of these strains, genome sequences of the three strains were analyzed. The analysis showed that there was no noticeable difference among three isolates both in the genes for virulence factors and regulatory genes of ctx. However, vibrio seventh pandemic island-II (VSP-II) was retained in strain No. 1, but not in strains No. 2 or 3. Furthermore, it was revealed that the genotype of the B subunit of CT in strain No. 1 was type 1 and those of strains No. 2 and 3 were type 8. Histopathological examination showed the disappearance of villi in intestinal tissue exposed to strain No. 1. In addition, fluid accumulated in the loop due to the action of strain No. 1 had hemolytic activity. This indicated that strain No. 1 may possesses virulence factors to induce severe syndrome when the strain infects humans, and that some strains of NAG vibrio inhabiting pond water in Kolkata have already acquired virulence, which can cause illness in humans. There is a possibility that these virulent NAG vibrios, which have acquired genes encoding factors involved in virulence of V. cholerae O1, may emerge in various parts of the world and cause epidemics in the future

    Haitian Variant Vibrio cholerae O1 Strains Manifest Higher Virulence in Animal Models

    Get PDF
    Vibrio cholerae causes fatal diarrheal disease cholera in humans due to consumption of contaminated water and food. To instigate the disease, the bacterium must evade the host intestinal innate immune system; penetrate the mucus layer of the small intestine, adhere and multiply on the surface of microvilli and produce toxin(s) through the action of virulence associated genes. V. cholerae O1 that has caused a major cholera outbreak in Haiti contained several unique genetic signatures. These novel traits are used to differentiate them from the canonical El Tor strains. Several studies reported the spread of these Haitian variant strains in different parts of the world including Asia and Africa, but there is a paucity of information on the clinical consequence of these genetic changes. To understand the impact of these changes, we undertook a study involving mice and rabbit models to evaluate the pathogenesis. The colonization ability of Haitian variant strain in comparison to canonical El Tor strain was found to be significantly more in both suckling mice and rabbit model. Adult mice also displayed the same results. Besides that, infection patterns of Haitian variant strains showed a completely different picture. Increased mucosal damaging, colonization, and inflammatory changes were observed through hematoxylin-eosin staining and transmission electron microscopy. Fluid accumulation ability was also significantly higher in rabbit model. Our study indicated that these virulence features of the Haitian variant strain may have some association with the severe clinical outcome of the cholera patients in different parts of the world

    Immunomodulatory role of outer membrane vesicles of Shigella in mouse model

    Get PDF
    In our previous studies, we discussed the protective efficacy of the two types of vaccine formulation namely SOMVs (single-serotype outer membrane vesicles) and MOMVs (multi-serotype outer membrane vesicles). Here, we compared the immunogenic roles of these two types of formulations and also studied general immunomodulation by Shigella OMVs in adult BALB/c mice. The production of various pro-inflammatory (TNF-α, IL-1β, IL-6, IL-12, IL-18, IFN-γ) and anti-inflammatory (IL-4 and IL-10) cytokine profile were assessed by in vivo, ex vivo and in vitro studies. MOMVs treated mice showed significantly enhanced cytokine production compared to SOMVs treated mice. MOMVs treatment has also upregulated iNOS mRNA synthesis in macrophages. Overall the OMVs of Shigella were found to show a mixed Th1/Th2 response and maintain the balance between pro-inflammation and anti-inflammation in mice. This will be crucial in the development of the next generation OMVs based vaccine against shigellosis

    Biochemical assessment of extract from <em>Oxalis corniculata</em> L.: Its role in food preservation, antimicrobial and antioxidative paradigms using <em>in situ</em> and <em>in vitro</em> models

    No full text
    230-243Food poisoning, often due to microbial contamination and improper storage practice, is a matter of concern. Plants and plant based products are gaining interest in processed food in food industry as an alternative to synthetic antimicrobials. In this context, here, we analysed flavonoid rich methanolic extract from the creeping woodsorrel, Oxalis corniculata L. leaf for its biochemical assessments along with its bioactivity against some common pathogenic bacteria. The bioactivity of the extract as evaluated in both in vitro and in situ methods, verified that the Oxalis corniculata leafextract exert reduces power, hydroxyl radical scavenging activity, inhibition in liposome peroxidation, and DPPH free radical quenching activity. The extract also inhibited the formation of peroxide during subsequent storage in the oil-emulsion system as well as in heated oil. The greater reducing activity of the extract prevented hydroxyl radical induced pUC18 DNA strand breaks and there by retain its original conformation. The extract also prevented the oxidative damage of goat liver cells during Fenton reaction. In vitro antimicrobial experiments implied that extract has inhibitory effect against Staphylococcus aureus, Escherichia coli, Salmonella Typhi, S. Typhiimurium and Vibrio cholera. E. coli showed the highest and V. cholera the lowest sensitivities against the extract. Moreover, the extract can be utilized for preservation of fish meat as it prevented the growth of food poisoning bacteria S. aureus during storage at 10°C. HPLC chromatogram detected the predominance of three active principal components, i.e. flavonoids in the following order: rutin>p-hydroxybenzoic acid>ferulic acid
    corecore