33 research outputs found

    Multi-dome forming of a Ti–Al–Mn alloy

    Get PDF

    Review on the Tutorial «GR and Lobbying: Interaction of Business and Government Departments»

    Get PDF

    Nanopowders Production and Micron-Sized Powders Spheroidization in DC Plasma Reactors

    Get PDF
    Technology for metal and inorganic compounds nanopowders production in DC arc plasma reactors has been developed. Similar DC arc plasma reactors were used for micron-sized powders spheroidization. Results of experimental studies are presented. Formation of nanoparticles via different mechanisms as well as mass transfer of nanopowders to the reactor cooling surfaces are discussed. Heat flux distribution along the reactor wall and its influence on the evolution of nanoparticles in the deposited layer are investigated. Effects of plasma torch and confined jet reactor operation parameters on the granulometric, phase and chemical composition of nanopowders are discussed. Potential of the confined plasma jet apparatus for micron-sized metal and composite particles spheroidization is demonstrated

    Analytical Model with Independent Control of Load–Displacement Curve Branches for Brittle Material Strength Prediction Using Pre-Peak Test Loads

    No full text
    The relevance of problems related to the fracturing of engineering materials and structures will not decrease over time. Fracture mechanics methods continue to be developed, which, combined with numerical methods of computer modeling, are implemented in software packages. However, this is only one facet of the complex of actual problems related to modeling and analyzing the behavior of brittle materials. No less important are the problems of developing not only numerical, but also new analytical models. In this paper, analytical models of only one class are considered, the distinguishing feature of which is that they describe the full load–strain curve using only one equation. However, the determination of model parameters requires tests for which the destruction of the test object is necessary, which may be unacceptable if controlled destruction is technically impossible or economically unreasonable. At the same time, in practice, it is possible to obtain values of stresses and strains caused by loads smaller than the peak load. Pre-peak loads can be used to predict strength using numerical methods, but it is desirable to have a suitable analytical model to extend the capabilities and to reduce the cost of applied research. Such a model was not found in the known literature, which motivated this work, which aims to modify the analytical model to predict strength and the full load–displacement (or stress–strain) curve using only pre-peak loading. This study is based on the analysis of known data and synthesis using mathematical modeling and fracture mechanics. The input data for the model do not include the particle size distribution and other physical and mechanical properties of the components of the material under study. These properties may remain unknown, but their influence is taken into account indirectly according to the “black box” methodology. Restrictions of the scope of the model are defined. The simulation results are consistent with experiments known from the literature

    Analytical Model with Independent Control of Load–Displacement Curve Branches for Brittle Material Strength Prediction Using Pre-Peak Test Loads

    No full text
    The relevance of problems related to the fracturing of engineering materials and structures will not decrease over time. Fracture mechanics methods continue to be developed, which, combined with numerical methods of computer modeling, are implemented in software packages. However, this is only one facet of the complex of actual problems related to modeling and analyzing the behavior of brittle materials. No less important are the problems of developing not only numerical, but also new analytical models. In this paper, analytical models of only one class are considered, the distinguishing feature of which is that they describe the full load–strain curve using only one equation. However, the determination of model parameters requires tests for which the destruction of the test object is necessary, which may be unacceptable if controlled destruction is technically impossible or economically unreasonable. At the same time, in practice, it is possible to obtain values of stresses and strains caused by loads smaller than the peak load. Pre-peak loads can be used to predict strength using numerical methods, but it is desirable to have a suitable analytical model to extend the capabilities and to reduce the cost of applied research. Such a model was not found in the known literature, which motivated this work, which aims to modify the analytical model to predict strength and the full load–displacement (or stress–strain) curve using only pre-peak loading. This study is based on the analysis of known data and synthesis using mathematical modeling and fracture mechanics. The input data for the model do not include the particle size distribution and other physical and mechanical properties of the components of the material under study. These properties may remain unknown, but their influence is taken into account indirectly according to the “black box” methodology. Restrictions of the scope of the model are defined. The simulation results are consistent with experiments known from the literature

    Characterization of OT4-1 Alloy by Multi-Dome Forming Test

    No full text
    In this study, the rheological characteristics of a titanium alloy have been obtained by multi-dome bulging test. Free bulging process is an experimental technique that can be used to characterize material in conditions of biaxial tension during superplastic, as well as conventional, hot forming. The constitutive constants are calculated on a base of the information about the bulge geometry, applied pressure, and forming time. A multi-dome forming test allows one to reduce the number of the experiments required for the characterization, since every multi-dome test produces several domes of different size. In this study, a specific die for multi-dome test was used. The die has six holes with different radiuses of 20, 25, 30, 35, 40, and 45 mm. During a test, the specimen is clamped between blank holder and die holder, heated to a specific temperature, and formed by applying constant gas pressure. The experiments were conducted at different temperatures for OT4-1 titanium alloy. The constitutive constants were obtained by processing the experimental data using two different techniques and compared with tensile test results. In order to estimate the influence of friction on the experimental results and to verify obtained material characteristics, finite element (FE) simulation was performed. Finally, the results of FE simulation were compared with the experimental data. The results of the simulation show the advantage of material characterization based on multi dome tests and its interpretation by inverse analysis. The deviations produced by the effect of friction are more significant when the direct approach is applied instead of inverse analysis with a semi analytical model of the bulging process

    State and Prospects for Development of the Unified Information System for Managing the Staff of the State Civil Service of the Russian Federation

    No full text
    This study is devoted to the study, analysis of the practice of use, description of the state and development prospects of the federal state information system "Unified information system for managing the personnel of the state civil service of the Russian Federation", the development of proposals for improving the module "Professional development", the construction of a management algorithm for the Unified system in terms of professional development of state civil servants of the Russian Federation

    Additive chiral interaction on interfaces of "Heavy metal/Ferromagnet" structures for enhancement of the Dzyaloshinskii-Moriya interaction

    No full text
    corecore