5,502 research outputs found

    Global Motion Estimation using Machine Learning

    Get PDF

    Interpreting Financial Market Crashes as Earthquakes

    Get PDF
    We propose a modeling framework which allows for creating probability predictions on a future market crash in the medium term, like sometime in the next five days. Our framework draws upon noticeable similarities between stock returns around a financial market crash and seismic activity around earthquakes. Our model is incorporated in an Early Warning System for future crash days. Testing our EWS on S&P 500 data during the recent financial crisis, we find positive Hanssen-Kuiper Skill Scores. Furthermore our modeling framework is capable of exploiting information in the returns series not captured by well known and commonly used volatility models. EWS based on our models outperform EWS based on the volatility models forecasting extreme price movements, while forecasting is much less time-consuming

    Specification Testing in Hawkes Models

    Get PDF
    We propose various specification tests for Hawkes models based on the Lagrange Multiplier (LM) principle. Hawkes models can be used to model the occurrence of extreme events in financial markets. Our specific testing focus is on extending a univariate model to a multivariate model, that is, we examine whether there is a conditional dependence between extreme events in markets. Simulations show that the test has good size and power, in particular for sample sizes that are typically encountered in practice. Applying the specification test for dependence to US stocks, bonds and exchange rate data, we find strong evidence for cross-excitation within segments as well as between segments. Therefore, we recommend that univariate Hawkes models be extended to account for the cross-triggering phenomenon

    The Influence of Technology Use on Learning Skills Among Generation Z:A Gender and Cross-country Analysis

    Get PDF
    This inquiry flags the shortage of evidence on the distinctive effect of technology use on defined learning skills. To tackle this inertia, it identifies (1) video gaming, (2) internet searching and (3) smartphone usage as ubiquitous forms of technology. Then, it characterises (1) abstract conceptualisation, (2) concrete experience and (3) reflective observation and active experimentation as dominant learning skills. Investigating a Nigeria and UK sample of 240 generation Z students, the associations are examined alongside the effects of gender and country. Based on a structural equation model, the analysis showed that although alternate uses of technology have mostly significant influences, their impact is largely negative with only internet searching having a positive effect on learning. The findings are explained through a cognitive load lens and insights are offered to learning providers to temper the appetite for technology use in instructional designs with thought and caution

    Training, Retention, and Transfer of Data Entry Perceptual and Motoric Processes Over Long Retention Intervals

    Get PDF
    Subjects trained in a standard data entry task, which involved typing numbers (e.g., 5421) using their right hands. At test (6 months post-training), subjects completed the standard task, followed by a left-hand variant (typing with their left hands) that involved the same perceptual, but different motoric, processes as the standard task. At a second test (8 months post-training), subjects completed the standard task, followed by a code variant (translating letters into digits, then typing the digits with their right hands) that involved different perceptual, but the same motoric, processes as the standard task. For each of the three tasks, half the trials were trained numbers (old) and half were new. Repetition priming (faster response times to old than new numbers) was found for each task. Repetition priming for the standard task reflects retention of trained numbers; for the left-hand variant reflects transfer of perceptual processes; and for the code variant reflects transfer of motoric processes. There was thus evidence for both specificity and generalizability of training data entry perceptual and motoric processes over very long retention intervals

    Distribution of nearest distances between nodal points for the Berry function in two dimensions

    Full text link
    According to Berry a wave-chaotic state may be viewed as a superposition of monochromatic plane waves with random phases and amplitudes. Here we consider the distribution of nodal points associated with this state. Using the property that both the real and imaginary parts of the wave function are random Gaussian fields we analyze the correlation function and densities of the nodal points. Using two approaches (the Poisson and Bernoulli) we derive the distribution of nearest neighbor separations. Furthermore the distribution functions for nodal points with specific chirality are found. Comparison is made with results from from numerical calculations for the Berry wave function.Comment: 11 pages, 7 figure

    Penetrating particle ANalyzer (PAN)

    Full text link
    PAN is a scientific instrument suitable for deep space and interplanetary missions. It can precisely measure and monitor the flux, composition, and direction of highly penetrating particles (>∼> \sim100 MeV/nucleon) in deep space, over at least one full solar cycle (~11 years). The science program of PAN is multi- and cross-disciplinary, covering cosmic ray physics, solar physics, space weather and space travel. PAN will fill an observation gap of galactic cosmic rays in the GeV region, and provide precise information of the spectrum, composition and emission time of energetic particle originated from the Sun. The precise measurement and monitoring of the energetic particles is also a unique contribution to space weather studies. PAN will map the flux and composition of penetrating particles, which cannot be shielded effectively, precisely and continuously, providing valuable input for the assessment of the related health risk, and for the development of an adequate mitigation strategy. PAN has the potential to become a standard on-board instrument for deep space human travel. PAN is based on the proven detection principle of a magnetic spectrometer, but with novel layout and detection concept. It will adopt advanced particle detection technologies and industrial processes optimized for deep space application. The device will require limited mass (~20 kg) and power (~20 W) budget. Dipole magnet sectors built from high field permanent magnet Halbach arrays, instrumented in a modular fashion with high resolution silicon strip detectors, allow to reach an energy resolution better than 10\% for nuclei from H to Fe at 1 GeV/n

    Power laws in microrheology experiments on living cells: comparative analysis and modelling

    Full text link
    We compare and synthesize the results of two microrheological experiments on the cytoskeleton of single cells. In the first one, the creep function J(t) of a cell stretched between two glass plates is measured after applying a constant force step. In the second one, a micrometric bead specifically bound to transmembrane receptors is driven by an oscillating optical trap, and the viscoelastic coefficient Ge(ω)G_e(\omega) is retrieved. Both J(t)J(t) and Ge(ω)G_e(\omega) exhibit power law behavior: J(t)=A(t/t0)αJ(t)= A(t/t_0)^\alpha and Gˉe(ω)=ˉG0(ω/ω0)α\bar G_e(\omega)\bar = G_0 (\omega/\omega_0)^\alpha, with the same exponent α≈0.2\alpha\approx 0.2. This power law behavior is very robust ; α\alpha is distributed over a narrow range, and shows almost no dependance on the cell type, on the nature of the protein complex which transmits the mechanical stress, nor on the typical length scale of the experiment. On the contrary, the prefactors A0A_0 and G0G_0appear very sensitive to these parameters. Whereas the exponents α\alpha are normally distributed over the cell population, the prefactors A0A_0 and G0G_0 follow a log-normal repartition. These results are compared with other data published in the litterature. We propose a global interpretation, based on a semi-phenomenological model, which involves a broad distribution of relaxation times in the system. The model predicts the power law behavior and the statistical repartition of the mechanical parameters, as experimentally observed for the cells. Moreover, it leads to an estimate of the largest response time in the cytoskeletal network: τm≈1000\tau_m \approx 1000 s.Comment: 47 pages, 14 figures // v2: PDF file is now Acrobat Reader 4 (and up) compatible // v3: Minor typos corrected - The presentation of the model have been substantially rewritten (p. 17-18), in order to give more details - Enhanced description of protocols // v4: Minor corrections in the text : the immersion angles are estimated and not measured // v5: Minor typos corrected. Two references were clarifie
    • …
    corecore