153 research outputs found

    A setup for studies of photoelectron circular dichroism from chiral molecules in aqueous solution

    Get PDF
    We present a unique experimental design that enables the measurement of photoelectron circular dichroism (PECD) from chiral molecules in aqueous solution. The effect is revealed from the intensity difference of photoelectron emission into a backward-scattering angle relative to the photon propagation direction when ionizing with circularly polarized light of different helicity. This leads to asymmetries (normalized intensity differences) that depend on the handedness of the chiral sample and exceed the ones in conventional dichroic mechanisms by orders of magnitude. The asymmetry is largest for photon energies within several electron volts above the ionization threshold. A primary aim is to explore the effect of hydration on PECD. The modular and flexible design of our experimental setup EASI (Electronic structure from Aqueous Solutions and Interfaces) also allows for detection of more common photoelectron angular distributions, requiring distinctively different detection geometries and typically using linearly polarized light. A microjet is used for liquid-sample delivery. We describe EASI’s technical features and present two selected experimental results, one based on synchrotron-light measurements and the other performed in the laboratory, using monochromatized He-II α radiation. The former demonstrates the principal effectiveness of PECD detection, illustrated for prototypic gas-phase fenchone. We also discuss the first data from liquid fenchone. In the second example, we present valence photoelectron spectra from liquid water and NaI aqueous solution, here obtained from a planar-surface microjet (flatjet). This new development features a more favorable symmetry for angle-dependent photoelectron measurements

    The free energy landscape of retroviral integration

    Get PDF
    Retroviral integration, the process of covalently inserting viral DNA into the host genome, is a point of no return in the replication cycle. Yet, strand transfer is intrinsically iso-energetic and it is not clear how efficient integration can be achieved. Here we investigate the dynamics of strand transfer and demonstrate that consecutive nucleoprotein intermediates interacting with a supercoiled target are increasingly stable, resulting in a net forward rate. Multivalent target interactions at discrete auxiliary interfaces render target capture irreversible, while allowing dynamic site selection. Active site binding is transient but rapidly results in strand transfer, which in turn rearranges and stabilizes the intasome in an allosteric manner. We find the resulting strand transfer complex to be mechanically stable and extremely long-lived, suggesting that a resolving agent is required in vivo

    The relationship between T-lymphocyte infiltration, stage, tumour grade and survival in patients undergoing curative surgery for renal cell cancer

    Get PDF
    The present study examined the relationship between tumour stage, grade, T-lymphocyte subset infiltration and survival in patients who had undergone potentially curative surgery for renal clear-cell cancer (n=73). Intratumoural CD4+ T-lymphocyte infiltrate was associated with poor cancer-specific survival, independent of grade, in this cohort

    Surface enrichment in equimolar mixtures of non-functionalized and functionalized imidazolium-based ionic liquids

    Get PDF
    For equimolar mixtures of ionic liquids with imidazolium‐based cations of very different electronic structure, we observe very pronounced surface enrichment effects by angle‐resolved X‐ray photoelectron spectroscopy (XPS). For a mixture with the same anion, that is, 1‐methyl‐3‐octylimidazolium hexafluorophosphate+1,3‐di(methoxy)imidazolium hexafluorophosphate ([C8C1Im][PF6]+[(MeO)2Im][PF6]), we find a strong enrichment of the octyl chain‐containing [C8C1Im]+ cation and a corresponding depletion of the [(MeO)2Im]+ cation in the topmost layer. For a mixture with different cations and anions, that is, [C8C1Im][Tf2N]+[(MeO)2Im][PF6], we find both surface enrichment of the [C8C1Im]+ cation and the [Tf2N]− (bis[(trifluoromethyl)sulfonyl]imide) anion, while [(MeO)2Im]+ and [PF6]− are depleted from the surface. We propose that the observed behavior in these mixtures is due to a lowering of the surface tension by the enriched components. Interestingly, we observe pronounced differences in the chemical shifts of the imidazolium ring signals of the [(MeO)2Im]+ cations as compared to the non‐functionalized cations. Calculations of the electronic structure and the intramolecular partial charge distribution of the cations contribute to interpreting these shifts for the two different cations

    TS-AMIR: a topology string alignment method for intensive rapid protein structure comparison

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In structural biology, similarity analysis of protein structure is a crucial step in studying the relationship between proteins. Despite the considerable number of techniques that have been explored within the past two decades, the development of new alternative methods is still an active research area due to the need for high performance tools.</p> <p>Results</p> <p>In this paper, we present TS-AMIR, a Topology String Alignment Method for Intensive Rapid comparison of protein structures. The proposed method works in two stages: In the first stage, the method generates a topology string based on the geometric details of secondary structure elements, and then, utilizes an n-gram modelling technique over entropy concept to capture similarities in these strings. This initial correspondence map between secondary structure elements is submitted to the second stage in order to obtain the alignment at the residue level. Applying the Kabsch method, a heuristic step-by-step algorithm is adopted in the second stage to align the residues, resulting in an optimal rotation matrix and minimized RMSD. The performance of the method was assessed in different information retrieval tests and the results were compared with those of CE and TM-align, representing two geometrical tools, and YAKUSA, 3D-BLAST and SARST as three representatives of linear encoding schemes. It is shown that the method obtains a high running speed similar to that of the linear encoding schemes. In addition, the method runs about 800 and 7200 times faster than TM-align and CE respectively, while maintaining a competitive accuracy with TM-align and CE.</p> <p>Conclusions</p> <p>The experimental results demonstrate that linear encoding techniques are capable of reaching the same high degree of accuracy as that achieved by geometrical methods, while generally running hundreds of times faster than conventional programs.</p

    A Mathematical Framework for Protein Structure Comparison

    Get PDF
    Comparison of protein structures is important for revealing the evolutionary relationship among proteins, predicting protein functions and predicting protein structures. Many methods have been developed in the past to align two or multiple protein structures. Despite the importance of this problem, rigorous mathematical or statistical frameworks have seldom been pursued for general protein structure comparison. One notable issue in this field is that with many different distances used to measure the similarity between protein structures, none of them are proper distances when protein structures of different sequences are compared. Statistical approaches based on those non-proper distances or similarity scores as random variables are thus not mathematically rigorous. In this work, we develop a mathematical framework for protein structure comparison by treating protein structures as three-dimensional curves. Using an elastic Riemannian metric on spaces of curves, geodesic distance, a proper distance on spaces of curves, can be computed for any two protein structures. In this framework, protein structures can be treated as random variables on the shape manifold, and means and covariance can be computed for populations of protein structures. Furthermore, these moments can be used to build Gaussian-type probability distributions of protein structures for use in hypothesis testing. The covariance of a population of protein structures can reveal the population-specific variations and be helpful in improving structure classification. With curves representing protein structures, the matching is performed using elastic shape analysis of curves, which can effectively model conformational changes and insertions/deletions. We show that our method performs comparably with commonly used methods in protein structure classification on a large manually annotated data set

    Ionic liquids at electrified interfaces

    Get PDF
    Until recently, “room-temperature” (<100–150 °C) liquid-state electrochemistry was mostly electrochemistry of diluted electrolytes(1)–(4) where dissolved salt ions were surrounded by a considerable amount of solvent molecules. Highly concentrated liquid electrolytes were mostly considered in the narrow (albeit important) niche of high-temperature electrochemistry of molten inorganic salts(5-9) and in the even narrower niche of “first-generation” room temperature ionic liquids, RTILs (such as chloro-aluminates and alkylammonium nitrates).(10-14) The situation has changed dramatically in the 2000s after the discovery of new moisture- and temperature-stable RTILs.(15, 16) These days, the “later generation” RTILs attracted wide attention within the electrochemical community.(17-31) Indeed, RTILs, as a class of compounds, possess a unique combination of properties (high charge density, electrochemical stability, low/negligible volatility, tunable polarity, etc.) that make them very attractive substances from fundamental and application points of view.(32-38) Most importantly, they can mix with each other in “cocktails” of one’s choice to acquire the desired properties (e.g., wider temperature range of the liquid phase(39, 40)) and can serve as almost “universal” solvents.(37, 41, 42) It is worth noting here one of the advantages of RTILs as compared to their high-temperature molten salt (HTMS)(43) “sister-systems”.(44) In RTILs the dissolved molecules are not imbedded in a harsh high temperature environment which could be destructive for many classes of fragile (organic) molecules

    Barytocalcit von der Grube Himmelsfürst bei Freiberg (Sachsen)

    No full text
    corecore