1,055 research outputs found
Muon capture on nuclei with N > Z, random phase approximation, and in-medium renormalization of the axial-vector coupling constant
We use the random phase approximation to describe the muon capture rate on
Ca,Ca, Fe, Zr, and Pb. With
Ca as a test case, we show that the Continuum Random Phase
Approximation (CRPA) and the standard RPA give essentially equivalent
descriptions of the muon capture process. Using the standard RPA with the free
nucleon weak form factors we reproduce the experimental total capture rates on
these nuclei quite well. Confirming our previous CRPA result for the
nuclei, we find that the calculated rates would be significantly lower than the
data if the in-medium quenching of the axial-vector coupling constant were
employed.Comment: submitted to Phys. Rev.
Influence of the 6^1S_0-6^3P_1 Resonance on Continuous Lyman-alpha Generation in Mercury
Continuous coherent radiation in the vacuum-ultraviolet at 122 nm
(Lyman-alpha) can be generated using sum-frequency mixing of three fundamental
laser beams in mercury vapour. One of the fundamental beams is at 254 nm
wavelength, which is close to the 6^1S_0-6^3P_1 resonance in mercury.
Experiments have been performed to investigate the effect of this one-photon
resonance on phasematching, absorption and the nonlinear yield. The efficiency
of continuous Lyman-alpha generation has been improved by a factor of 4.5.Comment: 8 pages, 7 figure
Neutrino induced transitions between the ground states of the A=12 triad
Neutrino induced reactions on C, an ingredient of liquid
scintillators, have been studied in several experiments. We show that for
currently available neutrino energies, 300 MeV, calculated
exclusive cross sections CN for both muon
and electron neutrinos are essentially model independent, provided the
calculations simultaneously describe the rates of several other reactions
involving the same states or their isobar analogs. The calculations agree well
with the measured cross sections, which can be therefore used to check the
normalization of the incident neutrino spectrum and the efficiency of the
detector.Comment: 9 pages REVTEX, 2 postscript figures, text and figures available at
http://www.krl.caltech.edu/preprints/MAP.htm
Mutual Zonated Interactions of Wnt and Hh Signaling Are Orchestrating the Metabolism of the Adult Liver in Mice and Human
The Hedgehog (Hh) and Wnt/β-Catenin (Wnt) cascades are morphogen pathways whose pronounced influence on adult liver metabolism has been identified in recent years. How both pathways communicate and control liver metabolic functions are largely unknown. Detecting core components of Wnt and Hh signaling and mathematical modeling showed that both pathways in healthy liver act largely complementary to each other in the pericentral (Wnt) and the periportal zone (Hh) and communicate mainly by mutual repression. The Wnt/Hh module inversely controls the spatiotemporal operation of various liver metabolic pathways, as revealed by transcriptome, proteome, and metabolome analyses. Shifting the balance to Wnt (activation) or Hh (inhibition) causes pericentralization and periportalization of liver functions, respectively. Thus, homeostasis of the Wnt/Hh module is essential for maintaining proper liver metabolism and to avoid the development of certain metabolic diseases. With caution due to minor species-specific differences, these conclusions may hold for human liver as well
Nucleation and phase selection in undercooled melts: Magnetic alloys of industrial relevance (MAGNEPHAS)
Studies of phase selection and microstructure evolution in high-performance magnetic materials are an urgent need for optimization of production routes. Containerless solidification experiments by electromagnetic levitation and drop tube solidification were conducted in undercooled melts of Fe-Co, Fe-Ni soft magnetic, and Nd-Fe-B hard magnetic alloys. Melt undercooling under microgravity was achieved in the TEMPUS facility during parabolic flight campaigns. For Fe-Co and Fe-Ni alloys significant effects of microgravity on metastable phase formation were discovered. Microstructure modifications as well as metastable phase formation as function of undercooling and melt flow were elucidated in Nd-Fe-B. Modeling of solidification processes, fluid flow and heat transfer provide predictive tools for microstructure engineering from the melt. They were developed as a link between undercooling experiments under terrestrial and microgravity conditions and the production routes of magnetic materials
Partisan Asymmetries in Online Political Activity
We examine partisan differences in the behavior, communication patterns and
social interactions of more than 18,000 politically-active Twitter users to
produce evidence that points to changing levels of partisan engagement with the
American online political landscape. Analysis of a network defined by the
communication activity of these users in proximity to the 2010 midterm
congressional elections reveals a highly segregated, well clustered partisan
community structure. Using cluster membership as a high-fidelity (87% accuracy)
proxy for political affiliation, we characterize a wide range of differences in
the behavior, communication and social connectivity of left- and right-leaning
Twitter users. We find that in contrast to the online political dynamics of the
2008 campaign, right-leaning Twitter users exhibit greater levels of political
activity, a more tightly interconnected social structure, and a communication
network topology that facilitates the rapid and broad dissemination of
political information.Comment: 17 pages, 10 figures, 6 table
Neutrino-induced neutron spallation and supernova r-process nucleosynthesis
In order to explore the consequences of the neutrino irradiation for the
supernova r-process nucleosynthesis, we calculate the rates of charged-current
and neutral-current neutrino reactions on neutron-rich heavy nuclei, and
estimate the average number of neutrons emitted in the resulting spallation.
Our results suggest that charged-current captures can be important in
breaking through the waiting-point nuclei at N=50 and 82, while still allowing
the formation of abundance peaks. Furthermore, after the r-process freezes out,
there appear to be distinctive neutral-current and charged-current
postprocessing effects. A subtraction of the neutrino postprocessing effects
from the observed solar r-process abundance distribution shows that two mass
regions, A=124-126 and 183-187, are inordinately sensitive to neutrino
postprocessing effects. This imposes very stringent bounds on the freeze-out
radii and dynamic timescales governing the r-process. Moreover, we find that
the abundance patterns within these mass windows are entirely consistent with
synthesis by neutrino interactions. This provides a strong argument that the
r-process must occur in the intense neutrino flux provided by a core-collapse
supernova.Comment: 34 pages, 4 PostScript figures, RevTe
Chronic disease risk factors, healthy days and medical claims in South African employees presenting for health risk screening
BACKGROUND: Non-communicable diseases (NCD) accounts for more than a third (37%) of all deaths in South Africa. However, this burden of disease can be reduced by addressing risk factors. The aim of this study was to determine the health and risk profile of South African employees presenting for health risk assessments and to measure their readiness to change and improve lifestyle behaviour. METHODS: Employees (n = 1954) from 18 companies were invited to take part in a wellness day, which included a health-risk assessment. Self-reported health behaviour and health status was recorded. Clinical measures included cholesterol finger-prick test, blood pressure and Body Mass Index (BMI). Health-related age was calculated using an algorithm incorporating the relative risk for all case mortality associated with smoking, physical activity, fruit and vegetable intake, BMI and cholesterol. Medical claims data were obtained from the health insurer. RESULTS: The mean percentage of participation was 26% (n = 1954) and ranged from 4% in transport to 81% in the consulting sector. Health-related age (38.5 +/- 12.9 years) was significantly higher than chronological age (34.9 +/- 10.3 yrs) (p < 0.001). Both chronological and risk-related age were significantly different between the sectors (P < 0.001), with the manufacturing sector being the oldest and finance having the youngest employees. Health-related age was significantly associated with number of days adversely affected by mental and physical health, days away from work and total annual medical costs (p < 0.001). Employees had higher rates of overweight, smoking among men, and physical inactivity (total sample) when compared the general SA population. Increased health-related expenditure was associated with increased number of risk factors, absenteeism and reduced physical activity. CONCLUSION: SA employees' health and lifestyle habits are placing them at increased risk for NCD's, suggesting that they may develop NCD's earlier than expected. Inter-sectoral differences for health-related age might provide insight into those companies which have the greatest need for interventions, and may also assist in predicting future medical expenditure. This study underscores the importance of determining the health and risk status of employees which could assist in identifying the appropriate interventions to reduce the risk of NCD's among employees
Measurements of Charged Current Reactions of on
Charged Current reactions of on have been studied using a
decay-at-rest beam at the Los Alamos Neutron Science Center.
The cross section for the exclusive reaction
was measured to be cm. The observed
energy dependence of the cross section and angular distribution of the outgoing
electron agree well with theoretical expectations. Measurements are also
presented for inclusive transitions to excited states,
and compared with theoretical expectations. The
measured cross section, cm, is somewhat
lower than previous measurements and than a continuum random phase
approximation calculation. It is in better agreement with a recent shell model
calculation.Comment: 34 pages, 18 figures, accepted to PRC, replaced with the accepted on
Renormalization of the weak hadronic current in the nuclear medium
The renormalization of the weak charge-changing hadronic current as a
function of the reaction energy release is studied at the nucleonic level. We
have calculated the average quenching factors for each type of current (vector,
axial vector and induced pseudoscalar). The obtained quenching in the axial
vector part is, at zero momentum transfer, 19% for the sd shell and 23% in the
fp shell. We have extended the calculations also to heavier systems such as
Ni and Sn, where we obtain stronger quenchings, 44% and 59%,
respectively. Gamow--Teller type transitions are discussed, along with the
higher order matrix elements. The quenching factors are constant up to roughly
60 MeV momentum transfer. Therefore the use of energy-independent quenching
factors in beta decay is justified. We also found that going beyond the zeroth
and first order operators (in inverse nucleon mass) does not give any
substantial contribution. The extracted renormalization to the ratio
at q=100 MeV is -3.5%, -7.1$%, -28.6%, and +8.7% for mass 16, 40, 56, and 100,
respectively.Comment: 28 pages, 6 figure
- …
