619 research outputs found

    Radiation can never again dominate Matter in a Vacuum Dominated Universe

    Full text link
    We demonstrate that in a vacuum-energy-dominated expansion phase, surprisingly neither the decay of matter nor matter-antimatter annihilation into relativistic particles can ever cause radiation to once again dominate over matter in the future history of the universe.Comment: updated version, as it will appear in Phys. Rev D. Title change, and some other minor alteration

    Current Acceleration from Dilaton and Stringy Cold Dark Matter

    Get PDF
    We argue that string theory has all the ingredients to provide us with candidates for the cold dark matter and explain the current acceleration of our Universe. In any generic string compactification the dilaton plays an important role as it couples to the Standard Model and other heavy non-relativistic degrees of freedom such as the string winding modes and wrapped branes, we collectively call them stringy cold dark matter. These couplings are non-universal which results in an interesting dynamics for a rolling dilaton. Initially, its potential can track radiation and matter while beginning to dominate the dynamics recently, triggering a phase of acceleration. This scenario can be realized as long as the dilaton also couples strongly to some heavy modes. We furnish examples of such modes. We provide analytical and numerical results and compare them with the current supernovae result. This favors certain stringy candidates.Comment: 16 pages, 4 figures (colour

    Limits on MeV Dark Matter from the Effective Number of Neutrinos

    Full text link
    Thermal dark matter that couples more strongly to electrons and photons than to neutrinos will heat the electron-photon plasma relative to the neutrino background if it becomes nonrelativistic after the neutrinos decouple from the thermal background. This results in a reduction in N_eff below the standard-model value, a result strongly disfavored by current CMB observations. Taking conservative lower bounds on N_eff and on the decoupling temperature of the neutrinos, we derive a bound on the dark matter particle mass of m_\chi > 3-9 MeV, depending on the spin and statistics of the particle. For p-wave annihilation, our limit on the dark matter particle mass is stronger than the limit derived from distortions to the CMB fluctuation spectrum produced by annihilations near the epoch of recombination.Comment: 5 pages, 1 figure, discussion added, references added and updated, labels added to figure, to appear in Phys. Rev.

    Effective Hedging of Mortgage Interest Rate Risk

    Get PDF
    Unfortunately, the hedging effectiveness of the GNMA futures market has been diminished by a lack of understanding of the selection of proper hedge ratios. This paper presents a derivation of the optimal hedge ratio for hedging interest rate risk with a GNMA futures contract. The hedge ratio is then applied to different hedging situations and the results of the traditional and newly derived hedging strategies are examined

    Stringy Effects During Inflation and Reheating

    Get PDF
    We consider inflationary cosmology in the context of string compactifications with multiple throats. In scenarios where the warping differs significantly between throats, string and Kaluza-Klein physics can generate potentially observable corrections to the cosmology of inflation and reheating. First we demonstrate that a very low string scale in the ground state compactification is incompatible with a high Hubble scale during inflation, and we propose that the compactification geometry is altered during inflation. In this configuration, the lowest scale is just above the Hubble scale, which is compatible with effective field theory but still leads to potentially observable CMB corrections. Also in the appropriate region of parameter space, we find that reheating leads to a phase of long open strings in the Standard Model sector (before the usual radiation-dominated phase). We sketch the cosmology of the long string phase and we discuss possible observational consequences.Comment: 33pp, RevTeX4, v2. minor changes, added ref

    Anisotropic higher derivative gravity and inflationary universe

    Get PDF
    Stability analysis of the Kantowski-Sachs type universe in pure higher derivative gravity theory is studied in details. The non-redundant generalized Friedmann equation of the system is derived by introducing a reduced one dimensional generalized KS type action. This method greatly reduces the labor in deriving field equations of any complicate models. Existence and stability of inflationary solution in the presence of higher derivative terms are also studied in details. Implications to the choice of physical theories are discussed in details in this paper.Comment: 9 page

    Can the Acceleration of Our Universe Be Explained by the Effects of Inhomogeneities?

    Full text link
    No. It is simply not plausible that cosmic acceleration could arise within the context of general relativity from a back-reaction effect of inhomogeneities in our universe, without the presence of a cosmological constant or ``dark energy.'' We point out that our universe appears to be described very accurately on all scales by a Newtonianly perturbed FLRW metric. (This assertion is entirely consistent with the fact that we commonly encounter δρ/ρ>1030\delta \rho/\rho > 10^{30}.) If the universe is accurately described by a Newtonianly perturbed FLRW metric, then the back-reaction of inhomogeneities on the dynamics of the universe is negligible. If not, then it is the burden of an alternative model to account for the observed properties of our universe. We emphasize with concrete examples that it is {\it not} adequate to attempt to justify a model by merely showing that some spatially averaged quantities behave the same way as in FLRW models with acceleration. A quantity representing the ``scale factor'' may ``accelerate'' without there being any physically observable consequences of this acceleration. It also is {\it not} adequate to calculate the second-order stress energy tensor and show that it has a form similar to that of a cosmological constant of the appropriate magnitude. The second-order stress energy tensor is gauge dependent, and if it were large, contributions of higher perturbative order could not be neglected. We attempt to clear up the apparent confusion between the second-order stress energy tensor arising in perturbation theory and the ``effective stress energy tensor'' arising in the ``shortwave approximation.''Comment: 20 pages, 1 figure, several footnotes and references added, version accepted for publication in CQG;some clarifying comments adde

    Probing Unstable Massive Neutrinos with Current Cosmic Microwave Background Observations

    Get PDF
    The pattern of anisotropies in the Cosmic Microwave Background depends upon the masses and lifetimes of the three neutrino species. A neutrino species of mass greater than 10 eV with lifetime between 10^{13} sec and 10^{17} sec leaves a very distinct signature (due to the integrated Sachs-Wolfe effect): the anisotropies at large angles are predicted to be comparable to those on degree scales. Present data exclude such a possibility and hence this region of parameter space. For mν30m_\nu \simeq 30 eV, τ1013\tau \simeq 10^{13} sec, we find an interesting possibility: the Integrated Sachs Wolfe peak produced by the decaying neutrino in low-Ω\Omega models mimics the acoustic peak expected in an Ω=1\Omega = 1 model.Comment: 5 pages, 4 figure

    Triad representation of the Chern-Simons state in quantum gravity

    Get PDF
    We investigate a triad representation of the Chern-Simons state of quantum gravity with a non-vanishing cosmological constant. It is shown that the Chern-Simons state, which is a well-known exact wavefunctional within the Ashtekar theory, can be transformed to the real triad representation by means of a suitably generalized Fourier transformation, yielding a complex integral representation for the corresponding state in the triad variables. It is found that topologically inequivalent choices for the complex integration contour give rise to linearly independent wavefunctionals in the triad representation, which all arise from the one Chern-Simons state in the Ashtekar variables. For a suitable choice of the normalization factor, these states turn out to be gauge-invariant under arbitrary, even topologically non-trivial gauge-transformations. Explicit analytical expressions for the wavefunctionals in the triad representation can be obtained in several interesting asymptotic parameter regimes, and the associated semiclassical 4-geometries are discussed. In restriction to Bianchi-type homogeneous 3-metrics, we compare our results with earlier discussions of homogeneous cosmological models. Moreover, we define an inner product on the Hilbert space of quantum gravity, and choose a natural gauge-condition fixing the time-gauge. With respect to this particular inner product, the Chern-Simons state of quantum gravity turns out to be a non-normalizable wavefunctional.Comment: Latex, 30 pages, 1 figure, to appear in Phys. Rev.

    Evaluation of a -defensin in a murine model of herpes simplex virus type 1 keratitis

    Get PDF
    PURPOSE. To test the activity of a synthetic -defensin, retrocyclin (RC)-2, in a murine herpes simplex virus (HSV)-1 keratitis model. METHODS. The in vitro antiviral activity of RC-2 against HSV-1 KOS was determined by yield reduction and viral inactivation assays. Efficacy in an experimental murine HSV-1 keratitis model was tested using pre-or postinfection treatment with 0.1% peptide in PBS with or without 2% methylcellulose. Viral titers in the tear film were determined by plaque assay. RESULTS. RC-2 inhibited HSV-1 KOS in vitro with an EC 50 of 10 M (ϳ20 g/mL) in yield-reduction assays, but was not directly virucidal. RC-106 (a less active analogue) did not inhibit HSV-1 KOS in culture. Incubating the virus with RC-2 or applying the peptide in 2% methylcellulose to the cornea before viral infection significantly reduced the severity of ocular disease, but postinfection treatment with 0.1% RC-2 in PBS with or without 2% methylcellulose did not. Viral titers were significantly reduced on some days after infection in the preincubation and prophylaxis groups. CONCLUSIONS. RC-2 was active against HSV-1 KOS in cultures and showed protective activity in vivo when used in a prophylactic mode, but the peptide showed limited activity in a postinfection herpes keratitis model. These findings support data obtained from experiments with HIV-1, HSV-2, and influenza A, indicating that RCs inhibit the entry of viruses rather than their replication. (Invest Ophthalmol Vis Sci. 2007;48: 5118 -5124
    corecore