14,099 research outputs found
Towards an understanding of the RHIC single electron data
High transverse momentum () single non-photonic electrons which have
been measured in the RHIC experiments come dominantly from heavy meson decay.
The ratio of their spectra in pp and AA collisions ()
reveals the energy loss of heavy quarks in the environment created by AA
collisions. Using a fixed coupling constant and the Debye mass () as infrared regulator perturbative QCD (pQCD) calculations are not able to
reproduce the data, neither the energy loss nor the azimuthal
distribution. Employing a running coupling constant and replacing the Debye
mass by a more realistic hard thermal loop (HTL) calculation we find a
substantial increase of the collisional energy loss which brings the
distribution as well as to values close to the experimental ones
without excluding a contribution from radiative energy loss.Comment: Accepted for publication in Physical Review
A comprehensive population synthesis study of post-common envelope binaries
We apply population synthesis techniques to calculate the present day
population of post-common envelope binaries (PCEBs) for a range of theoretical
models describing the common envelope (CE) phase. Adopting the canonical energy
budget approach we consider models where the ejection efficiency,
\alpha_{\rmn{CE}} is either a constant, or a function of the secondary mass.
We obtain the envelope binding energy from detailed stellar models of the
progenitor primary, with and without the thermal and ionization energy, but we
also test a commonly used analytical scaling. We also employ the alternative
angular momentum budget approach, known as the -algorithm. We find that
a constant, global value of \alpha_{\rmn{CE}} \ga 0.1 can adequately account
for the observed population of PCEBs with late spectral-type secondaries.
However, this prescription fails to reproduce IK Pegasi, which has a secondary
with spectral type A8. We can account for IK Pegasi if we include thermal and
ionization energy of the giant's envelope, or if we use the -algorithm.
However, the -algorithm predicts local space densities that are 1 to 2
orders of magnitude greater than estimates from observations. In contrast, the
canonical energy budget prescription with an initial mass ratio distribution
that favours unequal initial mass ratios gives a local space density which is
in good agreement with observations, and best reproduces the observed
distribution of PCEBs. Finally, all models fail to reproduce the sharp decline
for orbital periods, P_{\rmn{orb}} \ga 1 d in the orbital period distribution
of observed PCEBs, even if we take into account selection effects against
systems with long orbital periods and early spectral-type secondaries.Comment: Accepted for publication in the Monthly Notices of the Royal
Astronomical Society. 18 pages, 10 figures. Work concerning the
reconstruction of the common envelope phase presented in the previous version
will now be submitted in a separate paper in the near futur
Hydrodynamic simulation of elliptic flow
We use a hydrodynamic model to study the space-time evolution transverse to
the beam direction in ultrarelativistic heavy-ion collisions with nonzero
impact parameters. We focus on the influence of early pressure on the
development of radial and elliptic flow. We show that at high energies elliptic
flow is generated only during the initial stages of the expansion while radial
flow continues to grow until freeze-out. Quantitative comparisons with SPS data
from semiperipheral Pb+Pb collisions suggest the applicability of
hydrodynamical concepts already 1 fm/c after impact.Comment: 4 pages, 5 figures, proceedings for Quark Matter 9
Dark matter axions
The hypothesis of an `invisible' axion was made by Misha Shifman and others,
approximately thirty years ago. It has turned out to be an unusually fruitful
idea, crossing boundaries between particle physics, astrophysics and cosmology.
An axion with mass of order eV (with large uncertainties) is one of
the leading candidates for the dark matter of the universe. It was found
recently that dark matter axions thermalize and form a Bose-Einstein condensate
(BEC). Because they form a BEC, axions differ from ordinary cold dark matter
(CDM) in the non-linear regime of structure formation and upon entering the
horizon. Axion BEC provides a mechanism for the production of net overall
rotation in dark matter halos, and for the alignment of cosmic microwave
anisotropy multipoles. Because there is evidence for these phenomena,
unexplained with ordinary CDM, an argument can be made that the dark matter is
axions.Comment: 12 pages, invited talk at the Workshop `Crossing the Boundaries:
Gauge Dynamics at Strong Coupling' in honor of Misha Shifman's 60th birthday,
March 14-17, 2009, in Minneapolis, M
Reorganization of a dense granular assembly: the `unjamming response function'
We investigate the mechanical properties of a static dense granular assembly
in response to a local forcing. To this end, a small cyclic displacement is
applied on a grain in the bulk of a 2D disordered packing under gravity and the
displacement fields are monitored. We evidence a dominant long range radial
response in the upper half part above the sollicitation and after a large
number of cycles the response is `quasi-reversible' with a remanent dissipation
field exhibiting long range streams and vortex-like symmetry.Comment: 5 pages, 5 figures, accepted version for publication in Phys. Rev.
Consequences of energy conservation in relativistic heavy-ion collisions
Complete characterization of particle production and emission in relativistic
heavy-ion collisions is in general not feasible experimentally. This work
demonstrates, however, that the availability of essentially complete
pseudorapidity distributions for charged particles allows for a reliable
estimate of the average transverse momenta and energy of emitted particles by
requiring energy conservation in the process. The results of such an analysis
for Au+Au collisions at sqrt{s_{NN}}= 130 and 200 GeV are compared with
measurements of mean-p_T and mean-E_T in regions where such measurements are
available. The mean-p_T dependence on pseudorapidity for Au+Au collisions at
130 and 200 GeV is given for different collision centralities.Comment: 8 pages, 8 figures, Submitted to Phys. Rev.
Classical Strongly Coupled QGP: VII. Shear Viscosity and Self Diffusion
We construct the Liouville operator for the SU(2) classical colored Coulomb
plasma (cQGP) for arbitrary values of the Coulomb coupling , the
ratio of the mean Coulomb to kinetic energy. We show that its resolvent in the
classical colored phase space obeys a hierarchy of equations. We use a free
streaming approximation to close the hierarchy and derive an integral equation
for the time-dependent structure factor. Its reduction by projection yields
hydrodynamical equations in the long-wavelength limit. We discuss the character
of the hydrodynamical modes at strong coupling. The shear viscosity is shown to
exhibit a minimum at near the liquid point. This minimum
follows from the cross-over between the single particle collisional regime
which drops as and the hydrodynamical collisional regime which
rises as . The self-diffusion constant drops as
irrespective of the regime. We compare our results to molecular dynamics
simulations of the SU(2) colored Coulomb plasma. We also discuss the relevance
of our results for the quantum and strongly coupled quark gluon plasma (sQGP)Comment: 36 pages, 14 figure
Evolution of pion HBT radii from RHIC to LHC -- Predictions from ideal hydrodynamics
We present hydrodynamic predictions for the charged pion HBT radii for a
range of initial conditions covering those presumably reached in Pb+Pb
collisions at the LHC. We study central (b=0) and semi-central (b=7fm)
collisions and show the expected increase of the HBT radii and their azimuthal
oscillations. The predicted trends in the oscillation amplitudes reflect a
change of the final source shape from out-of-plane to in-plane deformation as
the initial entropy density is increased.Comment: 6 pages, incl. 5 figures. Contribution to the CERN Theory Institute
Workshop "Heavy Ion Collisions at the LHC -- Last Call for Predictions",
CERN, 14 May - 8 June 2007, to appear in J. Phys.
Black hole hunting in the Andromeda Galaxy
We present a new technique for identifying stellar mass black holes in low
mass X-ray binaries (LMXBs), and apply it to XMM-Newton observations of M31. We
examine X-ray time series variability seeking power density spectra (PDS)
typical of LMXBs accreting at a low accretion rate (which we refer to as Type A
PDS); these are very similar for black hole and neutron star LMXBs. Galactic
neutron star LMXBs exhibit Type A PDS at low luminosities (~10^36--10^37 erg/s)
while black hole LMXBs can exhibit them at luminosities >10^38 erg/s. We
propose that Type A PDS are confined to luminosities below a critical fraction
of the Eddington limit, that is constant for all LMXBs; we have examined
asample of black hole and neutron star LMXBs and find they are all consistent
with = 0.10+/-0.04 in the 0.3--10 keV band. We present luminosity and PDS
data from 167 observations of X-ray binaries in M31 that provide strong support
for our hypothesis. Since the theoretical maximum mass for a neutron star is
\~3.1 M_Sun, we therefore assert that any LMXB that exhibits a Type A PDS at a
0.3--10 keV luminosity greater than 4 x 10^37 erg/s is likely to contain a
black hole primary. We have found eleven new black hole candidates in M31 using
this method. We focus on XMM-Newton observations of RX J0042.4+4112, an X-ray
source in M31 and find the mass of the primary to be 7+/-2 M_Sun, if our
assumptions are correct. Furthermore, RX J0042.4+4112 is consistently bright in
\~40 observations made over 23 years, and is likely to be a persistently bright
LMXB; by contrast all known Galactic black hole LMXBs are transient. Hence our
method may be used to find black holes in known, persistently bright Galactic
LMXBs and also in LMXBs in other galaxies.Comment: 6 Pages, 6 figures. To appear in the conference proceedings of
"Interacting Binaries: Accretion, Evolution and Outcomes" (Cefalu, July 4-10
2004
Large-amplitude isothermal fluctuations and high-density dark-matter clumps
Large-amplitude isothermal fluctuations in the dark matter energy density,
parameterized by \Phi\equiv\delta\rhodm/\rhodm, are studied within the
framework of a spherical collapse model. For \Phi \ga 1, a fluctuation
collapses in the radiation-dominated epoch and produces a dense dark-matter
object. The final density of the virialized object is found to be \rho_F
\approx 140\, \Phi^3 (\Phi+1) \rhoeq, where \rhoeq is the matter density at
equal matter and radiation energy density. This expression is valid for the
entire range of possible values of , both for and . Some astrophysical consequences of high-density dark-matter clumps are
discussed.Comment: 15 pages plus 3 figures (included at the end as a uuencoded
postscript file), LaTeX, FNAL--PUB--94/055--
- …