11,951 research outputs found

    Search for Cosmic Axions using an Optical Interferometer

    Full text link
    A high finesse optical cavity can be used to search for cosmic axions in the mass range 10^{-6}< m_a <10^{-4} eV. Either a two-arm or a single-arm cavity is suitable and in either case the signal as resonant sidebands imposed on the carrier. Assuming for the local axion density the usual figure of 500 MeV/cm^3 [8], the KSVZ axion line [4] g/m_a = 0.4 Gev^{-2}, can be reached over the full mass range in a one year search.Comment: 4 pages, 2 figur

    Black hole hunting in the Andromeda Galaxy

    Full text link
    We present a new technique for identifying stellar mass black holes in low mass X-ray binaries (LMXBs), and apply it to XMM-Newton observations of M31. We examine X-ray time series variability seeking power density spectra (PDS) typical of LMXBs accreting at a low accretion rate (which we refer to as Type A PDS); these are very similar for black hole and neutron star LMXBs. Galactic neutron star LMXBs exhibit Type A PDS at low luminosities (~10^36--10^37 erg/s) while black hole LMXBs can exhibit them at luminosities >10^38 erg/s. We propose that Type A PDS are confined to luminosities below a critical fraction of the Eddington limit, lcl_c that is constant for all LMXBs; we have examined asample of black hole and neutron star LMXBs and find they are all consistent with lcl_c = 0.10+/-0.04 in the 0.3--10 keV band. We present luminosity and PDS data from 167 observations of X-ray binaries in M31 that provide strong support for our hypothesis. Since the theoretical maximum mass for a neutron star is \~3.1 M_Sun, we therefore assert that any LMXB that exhibits a Type A PDS at a 0.3--10 keV luminosity greater than 4 x 10^37 erg/s is likely to contain a black hole primary. We have found eleven new black hole candidates in M31 using this method. We focus on XMM-Newton observations of RX J0042.4+4112, an X-ray source in M31 and find the mass of the primary to be 7+/-2 M_Sun, if our assumptions are correct. Furthermore, RX J0042.4+4112 is consistently bright in \~40 observations made over 23 years, and is likely to be a persistently bright LMXB; by contrast all known Galactic black hole LMXBs are transient. Hence our method may be used to find black holes in known, persistently bright Galactic LMXBs and also in LMXBs in other galaxies.Comment: 6 Pages, 6 figures. To appear in the conference proceedings of "Interacting Binaries: Accretion, Evolution and Outcomes" (Cefalu, July 4-10 2004

    Initial states and infrared physics in locally de Sitter spacetime

    Full text link
    The long wavelength physics in a de Sitter region depends on the initial quantum state. While such long wavelength physics is under control for massive fields near the Hartle-Hawking vacuum state, such initial states make unnatural assumptions about initial data outside the region of causal contact of a local observer. We argue that a reasonable approximation to a maximum entropy state, one that makes minimal assumptions outside an observer's horizon volume, is one where a cutoff is placed on a surface bounded by timelike geodesics, just outside the horizon. For sufficiently early times, such a cutoff induces secular logarithmic divergences with the expansion of the region. For massive fields, these effects sum to finite corrections at sufficiently late times. The difference between the cutoff correlators and Hartle-Hawking correlators provides a measure of the theoretical uncertainty due to lack of knowledge of the initial state in causally disconnected regions. These differences are negligible for primordial inflation, but can become significant during epochs with very long-lived de Sitter regions, such as we may be entering now.Comment: 19 pages, 4 figures, references adde

    Effects of Minijets on Hadronic Spectra and Azimuthal Harmonics in Au-Au Collisions at 200 GeV

    Full text link
    The production of hadrons in heavy-ion collisions at RHIC in the low transverse-momentum (pTp_T) region is investigated in the recombination model with emphasis on the effects of minijets on the azimuthal anisotropy. Since the study is mainly on the hadronization of partons at late time, the fluid picture is not used to trace the evolution of the system. The inclusive distributions at low pTp_T are determined as the recombination products of thermal partons. The pTp_T dependencies of both pion and proton have a common exponential factor apart from other dissimilar kinematic and resonance factors, because they are inherited from the same pool of thermal partons. Instead of the usual description based on hydrodynamics, the azimuthal anisotropy of the produced hadrons is explained as the consequence of the effects of minijets, either indirectly through the recombination of enhanced thermal partons in the vicinity of the trajectories of the semihard partons, or directly through thermal-shower recombination. Although our investigation is focussed on the single-particle distribution at midrapidity, we give reasons why a component in that distribution can be identified with the ridge, which together with the second harmonic v2v_2 is due to the semihard partons created near the medium surface that lead to calculable anisotropy in ϕ\phi. It is shown that the higher azimuthal harmonics, vnv_n, can also be well reproduced without reference to flow. The pTp_T and centrality dependencies of the higher harmonics are prescribed by the interplay between TT and TS recombination components. The implication of the success of this drastic departure from the conventional approach is discussed.Comment: 28 pages and 8 figures, more discussions and references adde

    Femtolensing and Picolensing by Axion Miniclusters

    Get PDF
    Non-linear effects in the evolution of the axion field in the early Universe may lead to the formation of gravitationally bound clumps of axions, known as ``miniclusters.'' Minicluster masses and radii should be in the range Mmc1012MM_{\rm mc}\sim10^{-12} M_\odot and Rmc1010R_{\rm mc} \sim 10^{10}cm, and in plausible early-Universe scenarios a significant fraction of the mass density of the Universe may be in the form of axion miniclusters. If such axion miniclusters exist, they would have the physical properties required to be detected by ``femtolensing.''Comment: 7 pages plus 2 figures (Fig.1 avalible upon request), LaTe

    Can We See Lorentz-Violating Vector Fields in the CMB?

    Full text link
    We investigate the perturbation theory of a fixed-norm, timelike Lorentz-violating vector field. After consistently quantizing the vector field to put constraints on its parameters, we compute the primordial spectra of perturbations generated by inflation in the presence of this vector field. We find that its perturbations are sourced by the perturbations of the inflaton; without the inflaton perturbation the vector field perturbations decay away leaving no primordial spectra of perturbations. Since the inflaton perturbation does not have a spin-1 component, the vector field generically does not generate any spin-1 ``vector-type'' perturbations. Nevertheless, it will modify the amplitude of both the spin-0 ``scalar-type'' and spin-2 ``tensor-type'' perturbation spectra, leading to violations of the inflationary consistency relationship.Comment: 36 pages, 1 fig, RevTex4, Submitted to PR

    Elliptic Flow and Fixed p_T Suppression in a Final State Interaction Model

    Full text link
    It has been shown that a final state interaction model, used to describe J/psi suppression, can also describe the fixed p_T suppression of the pi^0 (and charged pions) yield at all values of p_T, with a final state interaction cross-section sigma close to one milibarn. We propose an extension of the model to the pion motion in the transverse plane - which introduces a dependence of the suppression on the azimuthal angle theta_R. Using the same value of sigma, we obtain values of the elliptic flow v_2 close to the experimental ones, for all values of p_T, including the soft p_T region.Comment: 21 pages, 6 figure

    Constraints on radiative decay of the 17-keV neutrino from COBE Measurements

    Full text link
    It is shown that, for a nontrivial radiative decay channel of the 17-keV neutrino, the photons would distort the microwave background radiation through ionization of the universe. The constraint on the branching ratio of such decays from COBE measurements is found to be more stringent than that from other considerations. The limit on the branching ratio in terms of the Compton yy parameter is Bγ<1.5×107(τν1011sec)0.45(y103)1.11h1B_\gamma < 1.5 \times 10^{-7} ({\tau_\nu \over 10^{11} sec})^{0.45} ({y \over 10^{-3}})^{1.11} h^{-1} for an Ω=1,Ωb=0.1\Omega=1, \Omega_b=0.1 universe.Comment: 7 pages. (figures will be sent on request) (To appear in Phys. Rev. D.

    Nitrous oxide in fresh water systems: An estimate for the yield of atmospheric N2O associated with disposal of human waste

    Get PDF
    The N2O content of waters in the Potomac and Merrimack Rivers was measured on a number of occasions over the period April to July 1977. The concentrations of dissolved N2O exceeded those which would apply in equilibrium with air by factors ranging from about 46 in the Potomac to 1.2 in the Merrimack. Highest concentrations of dissolved N2O were associated with sewage discharges from the vicinity of Washington, D. C., and analysis indicates a relatively high yield, 1.3 to 11%, for prompt conversion of waste nitrogen to N2O. Measurements of dissolved N2O in fresh water ponds near Boston demonstrated that aquatic systems provide both strong sources and sinks for atmospheric N2O
    corecore