5,375 research outputs found

    A comprehensive population synthesis study of post-common envelope binaries

    Full text link
    We apply population synthesis techniques to calculate the present day population of post-common envelope binaries (PCEBs) for a range of theoretical models describing the common envelope (CE) phase. Adopting the canonical energy budget approach we consider models where the ejection efficiency, \alpha_{\rmn{CE}} is either a constant, or a function of the secondary mass. We obtain the envelope binding energy from detailed stellar models of the progenitor primary, with and without the thermal and ionization energy, but we also test a commonly used analytical scaling. We also employ the alternative angular momentum budget approach, known as the Îł\gamma-algorithm. We find that a constant, global value of \alpha_{\rmn{CE}} \ga 0.1 can adequately account for the observed population of PCEBs with late spectral-type secondaries. However, this prescription fails to reproduce IK Pegasi, which has a secondary with spectral type A8. We can account for IK Pegasi if we include thermal and ionization energy of the giant's envelope, or if we use the Îł\gamma-algorithm. However, the Îł\gamma-algorithm predicts local space densities that are 1 to 2 orders of magnitude greater than estimates from observations. In contrast, the canonical energy budget prescription with an initial mass ratio distribution that favours unequal initial mass ratios gives a local space density which is in good agreement with observations, and best reproduces the observed distribution of PCEBs. Finally, all models fail to reproduce the sharp decline for orbital periods, P_{\rmn{orb}} \ga 1 d in the orbital period distribution of observed PCEBs, even if we take into account selection effects against systems with long orbital periods and early spectral-type secondaries.Comment: Accepted for publication in the Monthly Notices of the Royal Astronomical Society. 18 pages, 10 figures. Work concerning the reconstruction of the common envelope phase presented in the previous version will now be submitted in a separate paper in the near futur

    On the detection of pre-low-mass X-ray binaries

    Full text link
    We explore the population of candidate pre-low-mass X-ray binaries in which a neutron star accretes mass from the wind of a low-mass companion (mass < 2Msun) in the framework of a binary population synthesis study. The simulated accretion-luminosity distribution shows a primary peak close to 1e31 erg/s and a secondary peak near 1e28 erg/s. The relative contribution of the two peaks depends primarily on the magnitude of the kick velocity imparted to the neutron star at birth. The secondary peak is negligible for average kick velocities larger than 200 km/s, but becomes dominant for average kick velocities smaller than 50 km/s. Regardless of the relative contributions of the two peaks, our calculations suggest that pre-low-mass X-ray binaries may provide a non-negligible contribution to the population of discrete low-luminosity X-ray sources in the Galaxy.Comment: Accepted for publication in MNRA

    Angular momentum losses and the orbital period distribution of cataclysmic variables below the period gap: effects of circumbinary disks

    Full text link
    The population synthesis of cataclysmic variables below the period is investigated. A grid of detailed binary evolutionary sequences has been calculated and included in the simulations to take account of additional angular momentum losses beyond that associated with gravitational radiation and mass loss, due to nova outbursts, from the system. As a specific example, we consider the effect of a circumbinary disk to gain insight into the ingredients necessary to reproduce the observed orbital period distribution. The resulting distributions show that the period minimum lies at about 80 minutes with the number of systems monotonically increasing with increasing orbital period to a maximum near 90 minutes. There is no evidence for an accumulation of systems at the period minimum which is a common feature of simulations in which only gravitational radiation losses are considered. The period distribution is found to be fairly flat for orbital periods ranging from about 85 to 120 minutes. The steepness of the lower edge of the period gap can be reproduced, for example, by an input of systems at periods near 2.25 hrs due to a flow of cataclysmic variable binary systems from orbital periods longer than 2.75 hrs. The good agreement with the cumulated distribution function of observed systems within the framework of our model indicates that the angular momentum loss by a circumbinary disk or a mechanism which mimics its features coupled with a weighting factor to account for selection effects in the discovery of such systems and a flow of systems from above the period gap to below the period gap are important ingredients for understanding the overall period distribution of cataclysmic variable binary systems.Comment: Accepted for publication in Ap

    Eclipsing binaries in extrasolar planet transit surveys: the case of SuperWASP

    Full text link
    Using a comprehensive binary population synthesis scheme, we investigate the statistical properties of a sample of eclipsing binaries that is detectable by an idealised extrasolar planet transit survey with specifications broadly similar to those of the SuperWASP (Wide Angle Search for Planets) project. In this idealised survey the total number of detectable single stars in the Galactic disc is of the order of 10^6-10^7, while, for a flat initial mass ratio distribution, the total number of detectable eclipsing binaries is of the order of 10^4-10^5. The majority of the population of detectable single stars is made up of main-sequence stars (60%), horizontal-branch stars (20%), and giant-branch stars (10%). The largest contributions to the population of detectable eclipsing binaries stem from detached double main-sequence star binaries (60%), detached giant-branch main-sequence star binaries (20%), and detached horizontal-branch main-sequence star binaries (10%). The ratio of the number of eclipsing binaries to the number of single stars detectable by the idealised SuperWASP survey varies by less than a factor of 2.5 across the sky, and decreases with increasing Galactic latitude. It is found to be largest in the direction of the Galactic longitude l=-7.5deg and the Galactic latitude b=-22.5deg. We also show that the fractions of systems in different subgroups of eclipsing binaries are sensitive to the adopted initial mass ratio distribution, which is one of the poorest constrained input parameters in present-day binary population synthesis calculations. This suggests that once statistically meaningful results from transit surveys are available, they will be able to significantly improve the predictive power of population synthesis studies of interacting binaries and related objects. (abridged)Comment: Accepted for publication in MNRA

    Interpretation of the variability of the <i>ÎČ</i> Cephei star <i>λ</i> Scorpii. I. The multiple character

    Get PDF
    We derive accurate values of the orbital parameters of the close binary ÎČ Cephei star λ Scorpii. Moreover, we present the first determination of the properties of the triple system to which λ Scorpii belongs. Our analysis is based on a time series of 815 high-resolution spectra, covering a timespan of 14 years. We find a close orbit of 5d.9525days (e=0.26) and a wide orbit of approximately 1082d days (e=0.23). The orbital parameters of the triple star and a spectrum synthesis lead us to conclude that the system is composed of two early-type B stars and a low-mass pre-main-sequence star rather than containing an ultra-massive white dwarf as claimed before. Our proposed configuration is compatible with population synthesis. The radial velocity variations of the primary allow us to confirm the presence of at least one pulsation mode with frequency 4.679410 c d-1 which is subject to the light-time effect in the triple system. A detailed analysis of the complex line-profile variations is described in a subsequent paper

    Expression of the insulin-like growth factor-II/mannose-6-phosphate receptor in multiple human tissues during fetal life and early infancy

    Get PDF
    The insulin like growth factor-II/mannose-6-phosphate (IGF-II/M6P) receptor has been detected in many cells and tissues. In the rat, there is a dramatic developmental regulation of IGF-II/M6P receptor expression, the receptor being high in fetal and neonatal tissues and declining thereafter. We have systematically studied the expression of the human IGF-II/M6P receptor protein in tissues from 10 human fetuses and infants (age 23 weeks gestation to 24 months postnatal). We have asked 1) whether there is differential expression among different organs, and 2) whether or not the human IGF-II/M6P receptor is developmentally regulated from 23 weeks gestation to 24 months postnatal. Protein was extracted from human tissues using a buffer containing 2% sodium dodecyl sulfate and 2% Triton X-100. Aliquots of the protein extracts were analyzed by sodium dodecyl sulfate- polyacrylamide gel electrophoresis and immunoblotting using an anti-IGF- II/M6P receptor antiserum (no. 66416) and 125I-protein A or an immunoperoxidase stain. IGF-II/M6P receptor immunoreactivity was detected in all tissues studied with the highest amount of receptor being expressed in heart, thymus, and kidney and the lowest receptor content being measured in brain and muscle. The receptor content in ovary, testis, lung, and spleen was intermediate. The apparent molecular weight of the IGF-II/M6P receptor (220,000 kilos without reduction of disulfide bonds) varied among the different tissues: in brain the receptor was of lower molecular weight than in other organs. Immunoquantitation experiments employing 125I-protein A and protein extracts from human kidney at different ages revealed a small, albeit not significant, difference of the receptor content between fetal and postnatal tissues: as in other species, larger amounts of receptor seemed to be present in fetal than in postnatal organs. In addition, no significant difference of the receptor content between human fetal liver and early postnatal liver was measured employing 125I-protein A- immunoquantitation in three fetal and five postnatal liver tissue samples. The distribution of IGF-binding protein (IGEBP) species, another abundant and major class of IGF binding principles, was also measured in human fetal and early postnatal lung, liver, kidney, muscle, and brain using Western ligand blotting with 125I-IGF-II: as with IGF-II/M6P receptor immunoreactivity there was differential expression of the different classes of IGFBPs in the various organs

    Hydrodynamic emission of strange and non-strange particles at RHIC and LHC

    Full text link
    The hydrodynamic model is used to describe the single-particle spectra and elliptic flow of hadrons at RHIC and to predict the emission angle dependence of HBT correlations at RHIC and LHC energies.Comment: 6 pages LaTeX, 3 postscript figures. Proceedings for the conference "Strange Quark Matter 2003", Atlantic Beach, NC, March 12-17, 2003, to appear in J. Phys.

    Discovery of disc precession in the M31 dipping X-ray binary Bo 158

    Full text link
    We present results from three XMM-Newton observations of the M31 low mass X-ray binary XMMU J004314.4+410726.3 (Bo 158), spaced over 3 days in 2004, July. Bo 158 was the first dipping LMXB to be discovered in M31. Periodic intensity dips were previously seen to occur on a 2.78-hr period, due to absorption in material that is raised out of the plane of the accretion disc. The report of these observations stated that the dip depth was anti-correlated with source intensity. However, our new observations do not favour a strict intensity dependance, but rather suggest that the dip variation is due to precession of the accretion disc. This is to be expected in LMXBs with a mass ratio <~ 0.3 (period <~ 4 hr), as the disc reaches the 3:1 resonance with the binary companion, causing elongation and precession of the disc. A smoothed particle hydrodynamics simulation of the disc in this system shows retrograde rotation of a disc warp on a period of ~11 P_orb, and prograde disc precession on a period of ~29 P_orb. This is consistent with the observed variation in the depth of the dips. We find that the dipping behaviour is most likely to be modified by the disc precession, hence we predict that the dipping behaviour repeats on a 81+/-3 hr cycle.Comment: 9 pages, 6 figures, accepted for publication by MNRAS, changed conten

    The Dwarf Nova PQ Andromedae

    Full text link
    We report a photometric study of the WZ Sagittae-type dwarf nova PQ Andromedae. The light curve shows strong (0.05 mag full amplitude) signals with periods of 1263(1) and 634(1) s, and a likely double-humped signal with P=80.6(2) min. We interpret the first two as nonradial pulsation periods of the underlying white dwarf, and the last as the orbital period of the underlying binary. We estimate a distance of 150(50) pc from proper motions and the two standard candles available: the white dwarf and the dwarf-nova outburst. At this distance, the K magnitude implies that the secondary is probably fainter than any star on the main sequence -- indicating a mass below the Kumar limit at 0.075 M_sol. PQ And may be another "period bouncer", where evolution now drives the binary out to longer period.Comment: PDF, 13 pages, 2 figures; accepted, in press, to appear September 2005, PASP; more info at http://cba.phys.columbia.edu
    • 

    corecore