1,425 research outputs found

    Effects of space radiation on electronic microcircuits

    Get PDF
    The single event effects or phenomena (SEP), which so far have been observed as events falling on one or another of the SE classes: Single Event Upset (SEU), Single Event Latchup (SEL) and Single Event Burnout (SEB), are examined. Single event upset is defined as a lasting, reversible change in the state of a multistable (usually bistable) electronic circuit such as a flip-flop or latch. In a computer memory, SEUs manifest themselves as unexplained bit flips. Since latchup is in general caused by a single event of short duration, the single event part of the SEL term is superfluous. Nevertheless, it is used customarily to differentiate latchup due to a single heavy charged particle striking a sensitive cell from more ordinary kinds of latchup. Single event burnout (SEB) refers usually to total instantaneous failure of a power FET when struck by a single particle, with the device shorting out the power supply. An unforeseen failure of these kinds can be catastrophic to a space mission, and the possibilities are discussed

    Adhesive bubble removal method and apparatus for fiber applications

    Get PDF
    An assembly for supporting a fiber optic termination or connector in a centrifuge and comprising a cylindrical body member having a top portion adapted to receive the ferrule body portion of a fiber optic termination or connector and a bottom portion for receiving a cylindrical piston/sealing unit. The piston portion of the piston/sealing unit includes a compressible tip which is adapted to a butt up against the outer end of the ferrule body portion of the fiber optic termination or connector. A cylindrical end cap fits over the upper end of the body member for holding the fiber optic termination in place on the body member and causing a seal to be formed between the termination or connector and the upper portion of the body member adjacent the compressible tip of the plunger. The parts, when fitted together, are placed in a centrifuge which is operated for a predetermined spin cycle, so as to cause any bubbles in the uncured liquid adhesive to be vented outwardly from the termination through the end cap. Subsequent removal of the fiber optic termination or connector from the centrifuge and assembly is bubble free and ready to be joined with an optical fiber which is inserted in the ferrule end of the termination or connector

    Surface science: foundations of catalysis and nanoscience

    Get PDF

    Sputtering yield measurements at glancing incidence using a quartz crystal microbalance

    Get PDF
    Low energy sputtering yields at grazing incidence have been investigated experimentally using a quartz crystal microbalance (QCM) technique. This method involved precoating the QCM with a thin film of the desired target material and relating the resonance frequency shift directly to mass loss during ion bombardment. A highly focused, low divergence ion beam provided a well defined incidence angle. Focusing most of the ion current on the center of the target allowed for higher sensitivity by taking into account the radial mass sensitivity of the QCM. Measurements of Mo, Cu, and W sputtering yields were taken for low energy (80–1000 eV) Xe+ and Ar+ to validate this experimental method. The target films ranged from 3.5 to 8.0 µm in thickness and were deposited so that their crystal structure and density would match those of the bulk material as closely as possible. These properties were characterized using a combination of scanning electron microscope imagery, profilometry, and x-ray diffraction. At normal incidence, the sputtering yields demonstrated satisfactory agreement with previously published work. At angles of incidence up to 40° off normal, the data agreed well with predictions from existing theoretical models. Sputtering yields were found to increase by a factor of 1.6 over this range. The optimum angle for sputtering occurred at 55°, after which the yields rapidly decreased. Measurements were taken up to 80° from the surface normal

    Investment Banking and Analyst Objectivity: Evidence from Forecasts and Recommendations of Analysts Affiliated with M&A Advisors

    Get PDF
    Previous research finds some evidence that analysts affiliated with equity underwriters issue more optimistic earnings growth forecasts and optimistic recommendations of client stock than unaffiliated analysts. Unfortunately, these studies are unable to discriminate between three competing hypotheses for the apparent optimism. Under the bribery hypothesis, underwriting clients, with the promise of underwriting fees, coax analysts to compromise their objectivity. The execution-related conflict of hypothesis postulates that the investment banks employing analysts who are more bullish on a particular stock are better able to execute the deal, and so the banks pressure their analysts to be bullish in order to enhance their execution ability. Finally, the selection bias hypothesis postulates that analysts are objective, but because of the enhanced execution ability, banks with more optimistic analysts are more likely to get selected as underwriters. We test these hypotheses in a previously unexplored setting, namely M&A activities. Depending on whether an analyst is affiliated with the target or the acquirer and whether the analyst report is about the target or the acquirer, the hypotheses predict analyst optimism in some cases and pessimism in other. Therefore, examining the issue of analyst bias in the M&A context allows us to shed some light on alternative explanations for the impact of analyst affiliation on the properties of analyst forecasts and recommendations

    Optical fiber cable chemical stripping fixture

    Get PDF
    An elongated fixture handle member is connected to a fixture body member with both members having interconnecting longitudinal central axial bores for the passage of an optical cable therethrough. The axial bore of the fixture body member, however, terminates in a shoulder stop for the outer end of a jacket of the optical cable covering both an optical fiber and a coating therefor, with an axial bore of reduced diameter continuing from the shoulder stop forward for a predetermined desired length to the outer end of the fixture body member. A subsequent insertion of the fixture body member including the above optical fiber elements into a chemical stripping solution results in a softening of the exposed external coating thereat which permits easy removal thereof from the optical fiber while leaving a desired length coated fiber intact within the fixture body member

    Charge-Dissipative Electrical Cables

    Get PDF
    Electrical cables that dissipate spurious static electric charges, in addition to performing their main functions of conducting signals, have been developed. These cables are intended for use in trapped-ion or ionizing-radiation environments, in which electric charges tend to accumulate within, and on the surfaces of, dielectric layers of cables. If the charging rate exceeds the dissipation rate, charges can accumulate in excessive amounts, giving rise to high-current discharges that can damage electronic circuitry and/or systems connected to it. The basic idea of design and operation of charge-dissipative electrical cables is to drain spurious charges to ground by use of lossy (slightly electrically conductive) dielectric layers, possibly in conjunction with drain wires and/or drain shields (see figure). In typical cases, the drain wires and/or drain shields could be electrically grounded via the connector assemblies at the ends of the cables, in any of the conventional techniques for grounding signal conductors and signal shields. In some cases, signal shields could double as drain shields

    Working group written presentation: Trapped radiation effects

    Get PDF
    The results of the Trapped Radiation Effects Panel for the Space Environmental Effects on Materials Workshop are presented. The needs of the space community for new data regarding effects of the space environment on materials, including electronics are listed. A series of questions asked of each of the panels at the workshop are addressed. Areas of research which should be pursued to satisfy the requirements for better knowledge of the environment and better understanding of the effects of the energetic charged particle environment on new materials and advanced electronics technology are suggested
    corecore