1,208 research outputs found

    A Modified Direct Power Control Strategy Allowing the Connection of Three-Phase Inverters to the Grid Through LCL Filters

    Get PDF
    Abstract — This paper proposes a novel approach to adapt the conventional Direct Power Control (DPC) for high power applications with a third order LCL filter. The strong resonance present in the LCL filter is damped with additional effort in the system control. The application of DPC to the control of threephase Voltage Source Inverter (VSI) connected to the grid through a LCL filter has not yet been considered. An active damping strategy for the LCL filter together with harmonic rejection control is proposed over the conventional DPC. The steady state as well as the dynamic performance of the proposed system is presented by means of the simulation results and compared with the conventional approach

    Folding of VemP into translation-arresting secondary structure is driven by the ribosome exit tunnel

    Get PDF
    The ribosome is a fundamental biomolecular complex that synthesizes proteins in cells. Nascent proteins emerge from the ribosome through a tunnel, where they may interact with the tunnel walls or small molecules such as antibiotics. These interactions can cause translational arrest with notable physiological consequences. Here, we studied the arrest caused by the regulatory peptide VemP, which is known to form alpha-helices inside the ribosome tunnel near the peptidyl transferase center under specific conditions. We used all-atom molecular dynamics simulations of the entire ribosome and circular dichroism spectroscopy to study the driving forces of helix formation and how VemP causes the translational arrest. To that aim, we compared VemP dynamics in the ribosome tunnel with its dynamics in solution. We show that the VemP peptide has a low helical propensity in water and that the propensity is higher in mixtures of water and trifluorethanol. We propose that helix formation within the ribosome is driven by the interactions of VemP with the tunnel and that a part of VemP acts as an anchor. This anchor might slow down VemP progression through the tunnel enabling alpha-helix formation, which causes the elongation arrest

    Extended states in 1D lattices: application to quasiperiodic copper-mean chain

    Full text link
    The question of the conditions under which 1D systems support extended electronic eigenstates is addressed in a very general context. Using real space renormalisation group arguments we discuss the precise criteria for determining the entire spertrum of extended eigenstates and the corresponding eigenfunctions in disordered as well as quasiperiodic systems. For purposes of illustration we calculate a few selected eigenvalues and the corresponding extended eigenfunctions for the quasiperiodic copper-mean chain. So far, for the infinite copper-mean chain, only a single energy has been numerically shown to support an extended eigenstate [ You et al. (1991)] : we show analytically that there is in fact an infinite number of extended eigenstates in this lattice which form fragmented minibands.Comment: 10 pages + 2 figures available on request; LaTeX version 2.0

    The Error and Repair Catastrophes: A Two-Dimensional Phase Diagram in the Quasispecies Model

    Full text link
    This paper develops a two gene, single fitness peak model for determining the equilibrium distribution of genotypes in a unicellular population which is capable of genetic damage repair. The first gene, denoted by σvia \sigma_{via} , yields a viable organism with first order growth rate constant k>1 k > 1 if it is equal to some target ``master'' sequence σvia,0 \sigma_{via, 0} . The second gene, denoted by σrep \sigma_{rep} , yields an organism capable of genetic repair if it is equal to some target ``master'' sequence σrep,0 \sigma_{rep, 0} . This model is analytically solvable in the limit of infinite sequence length, and gives an equilibrium distribution which depends on \mu \equiv L\eps , the product of sequence length and per base pair replication error probability, and \eps_r , the probability of repair failure per base pair. The equilibrium distribution is shown to exist in one of three possible ``phases.'' In the first phase, the population is localized about the viability and repairing master sequences. As \eps_r exceeds the fraction of deleterious mutations, the population undergoes a ``repair'' catastrophe, in which the equilibrium distribution is still localized about the viability master sequence, but is spread ergodically over the sequence subspace defined by the repair gene. Below the repair catastrophe, the distribution undergoes the error catastrophe when μ \mu exceeds \ln k/\eps_r , while above the repair catastrophe, the distribution undergoes the error catastrophe when μ \mu exceeds lnk/fdel \ln k/f_{del} , where fdel f_{del} denotes the fraction of deleterious mutations.Comment: 14 pages, 3 figures. Submitted to Physical Review

    Can Remote Sensing Technologies Capture the Extreme Precipitation Event and Its Cascading Hydrological Response? A Case Study of Hurricane Harvey Using EF5 Modeling Framework

    Get PDF
    A new generation of precipitation measurement products has emerged, and their performances have gained much attention from the scientific community, such as the Multi-Radar Multi-Sensor system (MRMS) from the National Severe Storm Laboratory (NSSL) and the Global Precipitation Measurement Mission (GPM) from the National Aeronautics and Space Administration (NASA). This study statistically evaluated the MRMS and GPM products and investigated their cascading hydrological response in August of 2017, when Hurricane Harvey brought historical and record-breaking precipitation to the Gulf Coast (>1500 mm), causing 107 fatalities along with about USD 125 billion worth of damage. Rain-gauge observations from Harris County Flood Control District (HCFCD) and stream-gauge measurements by the United States Geological Survey (USGS) were used as ground truths to evaluate MRMS, GPM and National Centers for Environmental Prediction (NCEP) gauge-only data by using statistical metrics and hydrological simulations using the Ensemble Framework for Flash Flooding Forecast (EF5) model. The results indicate that remote sensing technologies can accurately detect and estimate the unprecedented precipitation event with their near-real-time products, and all precipitation products produced good hydrological simulations, where the Nash–Sutcliff model efficiency coefficients (NSCE) were close to 0.9 for both the MRMS and GPM products. With the timeliness and seamless coverage of MRMS and GPM, the study also demonstrated the capability and efficiency of the EF5 framework for flash flood modeling over the United States and potentially additional international domains.This study is partially funded by University of Oklahoma and also based upon work supported by the National Science Foundation under Grant No. 1545874. Open Access fees paid for in whole or in part by the University of Oklahoma Libraries.Ye
    corecore