127 research outputs found

    Geant4 simulation of production and interaction of muons

    Get PDF
    A set of models for Monte Carlo simulation of production and interaction of high energy muons is developed in the framework of the Geant4 toolkit. It describes the following physics processes: ionization of high energy muons with radiative corrections, bremsstrahlung, electron-positron pair production, muon induced nuclear reactions, gamma annihilation into muon pair, positron annihilation into muon pair, and into pion pair. These processes are essential for the LHC experiments, for the understanding of the background in underground detectors, for the simulation of effects related with high-energy muons in cosmic ray experiments and for the estimation of backgrounds in future colliders. The applicability area of the models extends to 1 PeV. The major use-cases are discussed

    Propagation of Muons and Taus at High Energies

    Get PDF
    The photonuclear contribution to charged lepton energy loss has been re-evaluated taking into account HERA results on real and virtual photon interactions with nucleons. With large Q2Q^2 processes incorporated, the average muon range in rock for muon energies of 10910^9 GeV is reduced by only 5% as compared with the standard treatment. We have calculated the tau energy loss for energies up to 10910^9 GeV taking into consideration the decay of the tau. A Monte Carlo evaluation of tau survival probability and range show that at energies below 107−10810^7-10^8 GeV, depending on the material, only tau decays are important. At higher energies the tau energy losses are significant, reducing the survival probability of the tau. We show that the average range for tau is shorter than its decay length and reduce to 17 km in water for an incident tau energy of 10910^9 GeV, as compared with its decay length of 49 km at that energy. In iron, the average tau range is 4.7 km for the same incident energy.Comment: 25 pages including 8 figure

    GEANT4 : a simulation toolkit

    Get PDF
    Abstract Geant4 is a toolkit for simulating the passage of particles through matter. It includes a complete range of functionality including tracking, geometry, physics models and hits. The physics processes offered cover a comprehensive range, including electromagnetic, hadronic and optical processes, a large set of long-lived particles, materials and elements, over a wide energy range starting, in some cases, from 250 eV and extending in others to the TeV energy range. It has been designed and constructed to expose the physics models utilised, to handle complex geometries, and to enable its easy adaptation for optimal use in different sets of applications. The toolkit is the result of a worldwide collaboration of physicists and software engineers. It has been created exploiting software engineering and object-oriented technology and implemented in the C++ programming language. It has been used in applications in particle physics, nuclear physics, accelerator design, space engineering and medical physics. PACS: 07.05.Tp; 13; 2

    Calibration of the NEVOD-EAS array for detection of extensive air showers

    Full text link
    In this paper we discuss the calibration of the NEVOD-EAS array which is a part of the Experimental Complex NEVOD, as well as the results of studying the response features of its scintillation detectors. We present the results of the detectors energy calibration, performed by comparing their response to different types of particles obtained experimentally and simulated with the Geant4 software package, as well as of the measurements of their timing resolution. We also discuss the results of studies of the light collection non-uniformity of the NEVOD-EAS detectors and of the accuracy of air-shower arrival direction reconstruction, which have been performed using other facilities of the Experimental Complex NEVOD: the muon hodoscope URAGAN and the coordinate-tracking detector DECOR.Comment: 16 pages, 17 figures, To be submitted to Nuclear Instruments and Methods

    Upper Limit on the Prompt Muon Flux Derived from the LVD Underground Experiment

    Get PDF
    We present the analysis of the muon events with all muon multiplicities collected during 21804 hours of operation of the first LVD tower. The measured depth-angular distribution of muon intensities has been used to obtain the normalization factor, A, the power index, gamma, of the primary all-nucleon spectrum and the ratio, R_c, of prompt muon flux to that of pi-mesons - the main parameters which determine the spectrum of cosmic ray muons at the sea level. The value of gamma = 2.77 +/- 0.05 (68% C.L.) and R_c < 2.0 x 10^-3 (95% C.L.) have been obtained. The upper limit to the prompt muon flux favours the models of charm production based on QGSM and the dual parton model.Comment: 10 pages, 4 figures, RevTex. To appear in Phys. Rev.

    Muon `Depth -- Intensity' Relation Measured by LVD Underground Experiment and Cosmic-Ray Muon Spectrum at Sea Level

    Get PDF
    We present the analysis of the muon events with all muon multiplicities collected during 21804 hours of operation of the first LVD tower. The measured angular distribution of muon intensity has been converted to the `depth -- vertical intensity' relation in the depth range from 3 to 12 km w.e.. The analysis of this relation allowed to derive the power index, γ\gamma, of the primary all-nucleon spectrum: γ=2.78±0.05\gamma=2.78 \pm 0.05. The `depth -- vertical intensity' relation has been converted to standard rock and the comparison with the data of other experiments has been done. We present also the derived vertical muon spectrum at sea level.Comment: 7 pages, 3 figures, to be published on Phys. Rev.

    Tunka Advanced Instrument for cosmic rays and Gamma Astronomy

    Full text link
    The paper is a script of a lecture given at the ISAPP-Baikal summer school in 2018. The lecture gives an overview of the Tunka Advanced Instrument for cosmic rays and Gamma Astronomy (TAIGA) facility including historical introduction, description of existing and future setups, and outreach and open data activities.Comment: Lectures given at the ISAPP-Baikal Summer School 2018: Exploring the Universe through multiple messengers, 12-21 July 2018, Bol'shie Koty, Russi

    GEANT4--a simulation toolkikt

    Get PDF
    Geant4 is a toolkit for simulating the passage of particles through matter. It includes a complete range of functionality including tracking, geometry, physics models and hits. The physics processes offered cover a comprehensive range, including electromagnetic, hadronic and optical processes, a large set of long-lived particles, materials and elements, over a wide energy range starting, in some cases, from 250 eV and extending in others to the TeV energy range. It has been designed and constructed to expose the physics models utilised, to handle complex geometries, and to enable its easy adaptation for optimal use in different sets of applications. The toolkit is the result of a worldwide collaboration of physicists and software engineers. It has been created exploiting software engineering and object-oriented technology and implemented in the C++ programming language. It has been used in applications in particle physics, nuclear physics, accelerator design, space engineering and medical physics

    Method of Separation Between Light and Heavy Groups of Primary CR Nuclei by LDF of Cherenkov Light in the Range 300–3000 TeV

    Get PDF
    The problem of chemical composition below the knee in the cosmic-ray energy spectrum has not yet been solved due to low statistics collected from direct experiments. In the HiSCORE experiment the lateral distribution functions (LDF) of Cherenkov light of EASs with energy greater than hundreds of TeV can be measured in detail for millions of individual events. A full steepness of LDF is sensitive to the depth of shower maximum and as a result to primary particle type. In this paper, we developed a parametric method of separation between heavy and light groups of nuclei using the ’knee-like’ approximation of LDF and taking into account measurement uncertainty
    • 

    corecore