66 research outputs found
Continuous culture model to examine factors that affect transduction among Pseudomonas aeruginosa strains in freshwater environments
Transduction among Pseudomonas aeruginosa strains was observed in continuous cultures operated under environmentally relevant generation times, cell densities, and phage-to-bacterium ratios, suggesting its importance as a natural mechanism of gene transfer. Transduction was quantified by the transfer of the Tra(sup-) Mob(sup-) plasmid Rms149 from a plasmid-bearing strain to an F116 lysogen that served as both the recipient and source of transducing phages. In control experiments in which transduction was prevented, there was a reduction in the phenotype of the mock transductant over time. However, in experiments in which transduction was permitted, the proportion of transductants in the population increased over time. These data suggest that transduction can maintain a phenotype for an extended period of time in a population from which it would otherwise be lost. Changes in the numbers of transductants were analyzed by a two-part mathematical model, which consisted of terms for the selection of the transductant's phenotype and for the formation of new transductants. Transduction rates ranged from 10(sup-9) to 10(sup-6) per total viable cell count per ml per generation and increased with both the recipient concentration and the phage-to-bacterium ratio. These observations indicate an increased opportunity for transduction to occur when the interacting components are in greater abundance.Peer reviewedMicrobiology and Molecular Genetic
Why Pleiotropic Interventions are Needed for Alzheimer's Disease
Alzheimer's disease (AD) involves a complex pathological cascade thought to be initially triggered by the accumulation of β-amyloid (Aβ) peptide aggregates or aberrant amyloid precursor protein (APP) processing. Much is known of the factors initiating the disease process decades prior to the onset of cognitive deficits, but an unclear understanding of events immediately preceding and precipitating cognitive decline is a major factor limiting the rapid development of adequate prevention and treatment strategies. Multiple pathways are known to contribute to cognitive deficits by disruption of neuronal signal transduction pathways involved in memory. These pathways are altered by aberrant signaling, inflammation, oxidative damage, tau pathology, neuron loss, and synapse loss. We need to develop stage-specific interventions that not only block causal events in pathogenesis (aberrant tau phosphorylation, Aβ production and accumulation, and oxidative damage), but also address damage from these pathways that will not be reversed by targeting prodromal pathways. This approach would not only focus on blocking early events in pathogenesis, but also adequately correct for loss of synapses, substrates for neuroprotective pathways (e.g., docosahexaenoic acid), defects in energy metabolism, and adverse consequences of inappropriate compensatory responses (aberrant sprouting). Monotherapy targeting early single steps in this complicated cascade may explain disappointments in trials with agents inhibiting production, clearance, or aggregation of the initiating Aβ peptide or its aggregates. Both plaque and tangle pathogenesis have already reached AD levels in the more vulnerable brain regions during the “prodromal” period prior to conversion to “mild cognitive impairment (MCI).” Furthermore, many of the pathological events are no longer proceeding in series, but are going on in parallel. By the MCI stage, we stand a greater chance of success by considering pleiotropic drugs or cocktails that can independently limit the parallel steps of the AD cascade at all stages, but that do not completely inhibit the constitutive normal functions of these pathways. Based on this hypothesis, efforts in our laboratories have focused on the pleiotropic activities of omega-3 fatty acids and the anti-inflammatory, antioxidant, and anti-amyloid activity of curcumin in multiple models that cover many steps of the AD pathogenic cascade (Cole and Frautschy, Alzheimers Dement 2:284–286, 2006)
Effectiveness of manual therapies: the UK evidence report
<p>Abstract</p> <p>Background</p> <p>The purpose of this report is to provide a succinct but comprehensive summary of the scientific evidence regarding the effectiveness of manual treatment for the management of a variety of musculoskeletal and non-musculoskeletal conditions.</p> <p>Methods</p> <p>The conclusions are based on the results of systematic reviews of randomized clinical trials (RCTs), widely accepted and primarily UK and United States evidence-based clinical guidelines, plus the results of all RCTs not yet included in the first three categories. The strength/quality of the evidence regarding effectiveness was based on an adapted version of the grading system developed by the US Preventive Services Task Force and a study risk of bias assessment tool for the recent RCTs.</p> <p>Results</p> <p>By September 2009, 26 categories of conditions were located containing RCT evidence for the use of manual therapy: 13 musculoskeletal conditions, four types of chronic headache and nine non-musculoskeletal conditions. We identified 49 recent relevant systematic reviews and 16 evidence-based clinical guidelines plus an additional 46 RCTs not yet included in systematic reviews and guidelines.</p> <p>Additionally, brief references are made to other effective non-pharmacological, non-invasive physical treatments.</p> <p>Conclusions</p> <p>Spinal manipulation/mobilization is effective in adults for: acute, subacute, and chronic low back pain; migraine and cervicogenic headache; cervicogenic dizziness; manipulation/mobilization is effective for several extremity joint conditions; and thoracic manipulation/mobilization is effective for acute/subacute neck pain. The evidence is inconclusive for cervical manipulation/mobilization alone for neck pain of any duration, and for manipulation/mobilization for mid back pain, sciatica, tension-type headache, coccydynia, temporomandibular joint disorders, fibromyalgia, premenstrual syndrome, and pneumonia in older adults. Spinal manipulation is not effective for asthma and dysmenorrhea when compared to sham manipulation, or for Stage 1 hypertension when added to an antihypertensive diet. In children, the evidence is inconclusive regarding the effectiveness for otitis media and enuresis, and it is not effective for infantile colic and asthma when compared to sham manipulation.</p> <p>Massage is effective in adults for chronic low back pain and chronic neck pain. The evidence is inconclusive for knee osteoarthritis, fibromyalgia, myofascial pain syndrome, migraine headache, and premenstrual syndrome. In children, the evidence is inconclusive for asthma and infantile colic.</p
Expression of the recA gene of Pseudomonas aeruginosa PAO is inducible by DNA-damaging agents.
Western (immunoblot) analysis using Escherichia coli anti-RecA antiserum revealed that expression of the RecA protein of Pseudomonas aeruginosa PAO is induced upon exposure of the bacterium to UV irradiation or norfloxacin, a quinolone related to nalidixic acid
Characterization of the Pseudomonas aeruginosa recA gene: the Les- phenotype.
The Les- phenotype (lysogeny establishment deficient) is a pleiotropic effect of the lesB908 mutation of Pseudomonas aeruginosa PAO. lesB908-containing strains are also (i) deficient in general recombination, (ii) sensitive to UV irradiation, and (iii) deficient in UV-stimulated induction of prophages. The P. aeruginosa recA-containing plasmid pKML3001 complemented each of these pleiotropic characteristics of the lesB908 mutation, supporting the hypothesis that lesB908 is an allele of the P. aeruginosa recA gene. The phenotypic effects of the lesB908 mutation may be best explained by the hypothesis that the lesB908 gene product is altered in such a way that it has lost synaptase activity but possesses intrinsic protease activity in the absence of DNA damage. The Les- phenotype is a result of the rapid destruction of newly synthesized phage repressor, resulting in lytic growth of the infecting virus. This hypothesis is consistent with the observations that increasing the number of copies of the phage repressor gene by increasing the multiplicity of infection (i.e., average number of phage genomes per cell) or by introducing the cloned phage repressor gene into a lesB908 mutant will also suppress the Les- phenotype in a phage-specific fashion
- …