2 research outputs found

    IL-6: A Janus-like factor in abdominal aortic aneurysm disease

    Get PDF
    AbstractBackground and aimsAn abdominal aortic aneurysm (AAA) is part of the atherosclerotic spectrum of diseases. The disease is hallmarked by a comprehensive localized inflammatory response with striking IL-6 hyperexpression. IL-6 is a multifaceted cytokine that, depending on the context, acts as a pro- or anti-inflammatory factor. In this study, we explore a putative role for IL-6 in AAA disease.MethodsELISA’s, Western blot analysis, real time PCR and array analysis were used to investigate IL-6 expression and signaling in aneurysm wall samples from patients undergoing elective AAA repair. A role for IL-6 in AAA disease was tested through IL-6 neutralization experiments (neutralizing antibody) in the elastase model of AAA disease.ResultsWe confirmed an extreme disparity in aortic wall IL-6 content between AAA and atherosclerotic disease (median [5th–95th percentile] aortic wall IL-6 content: 281.6 [0.0–1820.8] (AAA) vs. 1.9 [0.0–37.8] μg/g protein (atherosclerotic aorta), (p < 0.001). Array analysis followed by pathway analysis showed that IL-6 hyper-expression is followed by increased IL-6 signaling (p < 0.000039), an observation confirmed by higher aneurysm wall pSTAT3 levels, and SOCS1 and SOCS3 mRNA expression, (p < 0.018).Remarkably, preventive IL-6 neutralization i.e. treatment started one day prior to the elastase-induction resulted in >40% 7-day mortality due to aortic rupture. In contrast, delayed IL-6 neutralization (i.e. neutralization started at day 4 after elastase induction) did not result in ruptures, and quenched AAA growth (p < 0.021).ConclusionsAAA disease is characterized by increased IL-6 signaling. In the context of the elastase model of AAA disease, IL-6 appears a multi-faceted factor, protective upon acute injury, but negatively involved in the perpetuation of the disease process

    CXCL8 hyper-signaling in the aortic abdominal aneurysm

    Get PDF
    There are indications for elevated CXCL8 levels in abdominal aortic aneurysm disease (AAA). CXCL8 is concurrently involved in neutrophil-mediated inflammation and angiogenesis, two prominent and distinctive characteristics of AAA. As such we considered an evaluation of a role for CXCL8 in AAA progression relevant. ELISA's, real time PCR and array analysis were used to explore CXCL8 signaling in AAA wall samples. A role for CXCL8 in AAA disease was tested through the oral CXCR1/2 antagonist DF2156A in the elastase model of AAA disease. There is an extreme disparity in aortic wall CXCL8 content between AAA and aortic atherosclerotic disease (median [IQR] aortic wall CXCL8 content: 425 [141–1261] (AAA) vs. 23 [2.8–89] (atherosclerotic aorta) µg/g protein (P < 1 · 10−14)), and abundant expression of the CXCR1 and 2 receptors in AAA. Array analysis followed by pathway analysis showed that CXCL8 hyper-expression in AAA is followed increased by IL-8 signaling (Z-score for AAA vs. atherosclerotic control: 2.97, p < 0.0001). Interference with CXCL8 signaling through DF2156A fully abrogated AAA formation and prevented matrix degradation in the murine elastase model of AAA disease (p < 0.001). CXCL8-signaling is a prominent and distinctive feature of AAA, interference with the pathway constitutes a promising target for medical stabilization of AAA
    corecore