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ARTICLE INFO ABSTRACT

Keywords: There are indications for elevated CXCL8 levels in abdominal aortic aneurysm disease (AAA).
Abdominal aortic aneurysm CXCLS8 is concurrently involved in neutrophil-mediated inflammation and angiogenesis, two prominent and
CXCL8

distinctive characteristics of AAA. As such we considered an evaluation of a role for CXCL8 in AAA progression
relevant.

ELISA’s, real time PCR and array analysis were used to explore CXCL8 signaling in AAA wall samples. A role
for CXCL8 in AAA disease was tested through the oral CXCR1/2 antagonist DF2156A in the elastase model of
AAA disease.

There is an extreme disparity in aortic wall CXCL8 content between AAA and aortic atherosclerotic disease
(median [IQR] aortic wall CXCL8 content: 425 [141-1261] (AAA) vs. 23 [2.8-89] (atherosclerotic aorta) ug/g
protein (P < 1-107'%)), and abundant expression of the CXCR1 and 2 receptors in AAA. Array analysis fol-
lowed by pathway analysis showed that CXCL8 hyper-expression in AAA is followed increased by IL-8 signaling
(Z-score for AAA vs. atherosclerotic control: 2.97, p < 0.0001).

CXCR1/2 antagonist
Medical treatment
Elastase model

Interference with CXCL8 signaling through DF2156A fully abrogated AAA formation and prevented matrix
degradation in the murine elastase model of AAA disease (p < 0.001).

CXCL8-signaling is a prominent and distinctive feature of AAA, interference with the pathway constitutes a
promising target for medical stabilization of AAA.

1. Introduction

An Abdominal Aortic Aneurysm (AAA) is a common pathology and
a major cause of death due to rupture [1]. Most AAAs are asymptomatic
and remain undetected until rupture [1]. Hence, some countries in-
stigated nationwide screening programs for the identification of AAA.
These programs resulted in a major increase in patients with an iden-
tified AAA, most of them small in size.

In accordance to prevailing guidelines these patients with smaller
AAAs are kept under surveillance until the AAA reach the threshold for
repair at 55 mm. It is estimated that up to 70% of the patients in the
watch and follow up program will eventually reach the 55 mm inter-
vention threshold [2]. Accordingly, it has been pointed out that phar-
maceutical intervention reducing or inhibiting progression of small

Abbreviations:AAA, abdominal aortic aneurysm
* The DF2156A was a generous gift from Dompé S.p.A., I’Aquila, Italy.

AAA, and thus reducing the need for surgical repair could have major
advantages; both from a patients’ as from a socio-economical perspec-
tive [3]. Despite clear preclinical successes, no pharmaceutical inter-
vention has been proven to be effective so far [4].

The pathology of growing AAAs is thought to be a localized chronic
inflammatory response that is accompanied and perpetuated by ex-
aggerated angiogenesis and a proteolytic imbalance; the latter is being
held responsible for a progressive weakening of the aortic wall [1]. The
actual molecular basis has not been identified.

We previously documented CXCL8 hyper-expression as a clear dis-
tinctive and unique feature of AAA with 300-fold higher CXCL8 protein
levels in the aneurysm wall than in advanced aortic atherosclerotic wall
samples [5,6]. CXCL8 has comprehensive chemotactic effects on a
wide-variety of immune cells, in particular but not-exclusively on
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neutrophils; a cell type that is explicitly implicated in AAA disease
[5,7,8]. Moreover, CXCL8 stimulates protease expression and in-
flammation [9], and exerts strong pro-angiogenic effects by promoting
chemotaxis and proliferation of endothelial cells [10-12].

In this context, we considered further examination of a putative role
for CXCL8 signaling as a potential therapeutic target in AAA disease
relevant. The present study confirms the CXCL8 hyper-expression and
exaggerated activation of the CXCL8 downstream pathways in human
aneurysms, and shows that interference with CXCL8 signaling through
the oral CXCR1/2 antagonist DF2156A fully abrogates aneurysm for-
mation in an accepted model of AAA disease (the murine elastase
model).

2. Methods
2.1. Human samples

Collection and handling of the aneurysm and control aortic wall
samples was performed in accord with the guidelines of the Medical
and Ethical Committee Leiden University Medical Center, Leiden, The
Netherlands, and the “code of conduct for responsible use” by the Dutch
Federation of Biomedical Scientific Societies (https://www.federa.org/
sites/default/files/digital_version_first_part_code_of conduct_in_uk_
2011_12092012.pdf) [13]. Plasma samples used were from the An-
eurysm-Express biobank [14]. This study is approved by the Medical
Ethics Committees of the participating hospitals, and all participants
provided written informed consent.

We obtained tissue from anterior-lateral aneurysm wall during
elective surgery for asymptomatic AAA (> 5.5cm or larger). Aortic
tissue samples removed along with the renal artery during kidney ex-
plantation from brain-dead, heart-beating, adult organ donor, were
used as control samples. Aortic wall samples were divided in two parts.
One half was immediately snap-frozen in CO2-cooled isopentane or li-
quid N2 and stored at — 80 °C for later analysis. The other half was fixed
in 4% formalin for 12h and decalcified. The latter segments were
paraffin embedded and 4 um sections were processed into slices.

For immunohistochemistry, sections (n = 10 AAA, n = 10 control
atherosclerotic aortic wall samples) were deparaffinized, treated for
10 min with H,O, to block endogenous peroxidase activity, and in-
cubated overnight at room temperature with the primary antibody di-
luted in PBS-1% albumin. The following primary antibodies were used:
human myeloperoxidase (A398, DAKO, Amstelveen, The Netherlands),
CXCL8 (bs-078012, Bioss, Huissen, The Netherlands), CXCR1
(ab124344, Abcam, Cambridge UK), CXCR2 (bs-1629R, Bioss), pERK1/
2 (1481-1 Epitomics, Leiden, The Netherlands) and phospho-PKCA/¢
(CST 93768, Cell Signaling, Leiden, The Netherlands).

CXCL8 mRNA expression was quantified by semi quantitative RT, to
that end a total RNA extraction was performed according to manu-
facturer’s instructions. cDNA was prepared by using a Promega kit
(Promega, Leiden, the Netherlands) for RT-PCR. For the determination
of mRNA expression we used an established CXCL8 primer/probe set
(Thermo Fisher Scientific, Bleiswijk, The Netherlands), the mastermix
(Eurogentec, Maastricht, the Netherlands) and the ABI-7700 system
(Thermo Fisher Scientific) as previously described [13]. GAPDH (gly-
ceraldehyde-3-phosphate dehydrogenase) (Thermo Fisher Scientific)
was used for normalization.

Aortic wall CXCL8 protein content was determined using the
Aneurysm-Express Biobank [14] (n = 238 AAA samples and n = 26
control atherosclerotic samples) via ELISA, employing Luminex multi-
analyte profiling technology [15], using a bio-plex system (Bio-Rad,
Veenendaal, the Netherlands). Total protein concentration of every
sample was quantified via a BCA protein measurement method (Thermo
Fisher Scientific). All measured concentrations were related to the
protein concentrate of every sample. Inter-assay coefficient of variation
was < 10%.

Microarrays: RNA extraction was performed from full thickness
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aortic wall samples from 31 AAA patients (mean age 69.5 yrs. mean
diameter 62.3 + 12.1 mm) collected during elective aneurysm repair
and 9 control samples (infra renal aorta obtained during kidney pro-
curement for donation).

RNA from aneurysm wall was labeled and hybridized to [llumina
HumanHT-12 v4 BeadChips (Illumina, Eindhoven, the Netherlands).
Arrays were scanned with an Illumina iScan microarray scanner. Bead
level data preprocessing was done in Illumina GenomeStudio.

Analysis of array data: Quantile normalization and background re-
duction were performed according to standard procedures in the
INlumina GenomeStudio software. Gene expression data have been de-
posited at Gene Expression Omnibus under the GEO Accession number
GSE98278.

Association of genome-wide expression data with AAA phenotype
revealed 11,486 transcripts with P < 0.05. These differentially ex-
pressed transcripts were used as an input for pathway analysis through
Ingenuity Pathway Analysis suite (http://www.ingenuity.com, accessed
2016). Levels of significance were determined using Fisher’s exact tests
implemented in the software.[16]

2.2. Elastase model

All murine investigations were approved by the Leiden University
Medical Center animal welfare committee and were in compliance with
the Dutch government guidelines.

Eight-to-ten weeks old, male, C57BL/6 mice were obtained from
Charles River, France. The aneurysms were created via porcine pan-
creatic elastase (PPE) infusion as previously described [17-20]. After
the elastase infusion 0.05-0.1 mg/kg/12 h buprenorfine was given and
the mice recovered with free access to food and water. The oral CXCR1/
2 antagonist DF2156A (6 mg/kg), a generous gift from Dompé Pharma,
Milan, Italy [21] was given (n = 10) daily via oral gavage in 100 pl of
0.25% carboxymethylcellulose in PBS. Treatment was started the day
before the elastase infusion and the mice were sacrificed 14 days after
the infusion. Control animals (n = 10) received daily oral gavage of
100 pl of 0.25% carboxymethylcellulose in PBS for 15 days.

To compare the aortic growth rates of the different groups we
measured the maximum axial diameter of the aorta by means of ul-
trasound one day prior to elastase infusion, after one week and two
weeks after infusion by means of the Vevo 770 Imaging system using
RMV 704 microvisualization scan head (Visualsonics, CA).

At day 14 after the elastase infusion, the mice were sacrificed and
the aorta was removed, and embedded in paraffin for later analysis.
Immunohistochemical sections were deparaffinized and incubated
overnight at room temperature with the primary antibody diluted in
PBS -1% albumin. The sections were incubated with CD45 (BD
Pharmingen, Breda, The Netherlands), MAC3 (BD Pharmingen), MMP9
(Santa Cruz Biotechnology) and MPO (Abcam). Additional sections
were stained with Sirius Red for collagen and Weigert’s elastin stain to
visualize elastic laminae. Six slides per animal were used per staining
for analysis and only moderate or strongly reactive cells were counted
as positive. The slides were blindly evaluated. The mean value for po-
sitive staining cells on six slices was calculated for each animal.

2.3. Statistical analysis

All values are shown as mean (SD) and probability values of
P < 0.05 were considered statistically significant. After performing an
ANOVA test to explore the difference between human AAA and human
atherosclerotic samples, an unpaired t-test was performed.

The Mann-Whitney U test was used to detect significant difference
in aortic diameter and in cell count between the two groups of mice.

All analysis were performed using SPSS 23.0 (IBM, Amsterdam, The
Netherlands).
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Fig. 1. CXCL expression in human AAA and atherosclerotic ,control aorta wall. (A) Relative aortic wall CXCL8 protein content in AAA and atherosclerotic control aorta (CXCL8 protein
expression normalized on basis of protein content). AAA vs controls: P < 1.5- 10715, (B) Relative aortic wall CXCL8 mRNA content in AAA and atherosclerotic control aorta (mRNA
expression normalized on basis of GAPDH expression). AAA vs Control, P < 0.01. (C) Representative samples illustrating aortic wall CXCL-8 distribution (immunohistochemistry) in AAA

and control aorta. Overview 5X (bar = 500 pm), details 40 X (bar = 50 pm).

3. Results
3.1. CXCL8 expression in human abdominal aortic aneurysms

We first performed a validation of our previous observations of
CXCL8 hyper-expression in 238 AAA wall samples and control aorta
samples from the Aneurysm-Express Biobank[14]. Results confirmed
previous observations and showed a several hundred-fold increase
CXCL8 protein content in aneurysm wall samples (P < 0.0001,
Fig. 1A) and an approximately 16-fold higher CXCL8 mRNA expression
(P < 0.01, Fig. 1B) . Immunohistochemical staining for CXCL-8 in the
aneurysm wall shows comprehensively expression in macrophages,
neutrophils, and smooth muscle cells; as well as in a subpopulation of
lymphocytes, and occasional endothelial cells (Fig. 1C). CXCL-8 ex-
pression in advanced aortic atherosclerotic disease on the other hand is
essentially confined to foam cells, macrophages, and occasional smooth
muscle cells the intimal layer and intimal border zone of the medial
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layer of the aortic wall, and incidental lymphocytes (Fig. 1C).

3.2. Abundant presence and activation of the CXCL8- pathway in human
abdominal aortic aneurysms

CXCL8 signaling in humans is mediated through the chemokine
receptors: CXCR1 and 2. CXCL8 binding to these receptors results in
phosphorylation of factors such as the ERK (extracellular signal regu-
lated protein kinase) 1/2 and PKCA/¢. Immunohistochemical analysis
shows abundant expression of both the CXCR1 and CXCR2 receptors
(Fig. 2), and enhanced ERK and PKCA/¢ phosphorylation in AAA
compared to aortic atherosclerotic disease (Fig. 3A and B). CXCL8
signaling was further explored through Ingenuity-based transcriptomics
analysis. This analysis identified CXCL8 (IL-8) signaling pathway (Z-
score for AAA vs. atherosclerotic control: 2.97, P < 0.0001) and
granulocyte adhesion and diapedesis (P < 0.00001, Z-score not
available) among the top enriched pathways in AAA disease (Fig. 3C,
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Fig. 2. CXCR1 and CXCR2 expression in human AAA and atherosclerotic ,control aorta wall. (A) Representative immunohistochemical staining showing aortic wall CXCR1 distribution in
AAA and atherosclerotic control aorta. Overview 5X, detail 40 X . (B) Representative immunohistochemical staining showing aortic wall CXCR2 distribution in AAA and atherosclerotic
control aorta. Overview 5X (bar = 500 pm), details 40 X (bar = 100 pm).
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Control

Fig. 3. CXCL-8 signaling in human AAA and atherosclerotic ,control aorta wall. (A and B) Representative immunohistochemical staining showing aortic wall phosphoERK1/2 (A) and
PPCKA/¢ (B) distribution in AAA and control aorta. Overview 5X (bar = 500 um), details 40 X (bar = 100 pm). (C) CXCL-8 signaling pathway is upregulated in AAA vs atherosclerotic
control aorta (Z-score for AAA vs. atherosclerotic control: 2.97 (p < 0.0001), Ingenuity Pathway Analysis). Map shows the significantly up (red) and downregulated (green) genes and
their putative localization in signaling cascade. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

both p < 0.0001). promoter of CXC chemokine-mediated angiogenesis. Histologic eva-
CXCL8 has particularly strong effects on neutrophil chemotaxis, luation shows abundant and dispersed neutrophils (MPO staining) in
stabilization and activation, and is described to be the dominant human aneurysms, while neutrophils are absent in control
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Fig. 3. (continued)

atherosclerotic samples (Fig. 4). Occasional neutrophils in the vaso
vasora confirmed the validity of the staining. This characterizes neu-
trophils abundance as a clearly distinctive feature of human AAA.
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3.3. CXCR1/2 inhibition abrogates aneurysm formation.

To evaluate possible involvement of the CXCL8 in aneurysm for-
mation, we tested whether the oral CXCR1/CXCR2 inhibitor (DF2156A)
influences aneurysm formation in the established murine elastase
model of the disease. Mice (n = 10) received DF2156A during two
weeks via daily oral gavage starting from the day before elastase per-
fusion. Control animals (n = 10) received daily oral gavage with saline.
At the day before elastase perfusion, 7 days and 14 days after perfusion
the aortic diameter was measured via ultrasound.

Aortic dilatation at day 7 was similar in both groups (12.7%
SD *+ 8.5% (DF2156A) and 21.5% SD = 14.9% (vehicle), p = 0.16).
A daily gavage completely abolished aneurysm formation, measured at
day 14, in all animals (17.7% dilatation SD * 9.6%, (DF2156A) and
71.9% SD + 26.7% (vehicle) p < 0.001) (Fig. 5).

DF2156A treatment almost completely quenched leucocyte in-
filtration and preserved the integrity of the vessel wall as shown by an
increased collagen content and less elastin breaks (Fig. 6). Furthermore,
treatment with the CXCR1/CXCR2 inhibitor resulted in significantly
less leucocytes (p < 0.05) and reduced MMP9 content (p < 0.05)
compared to the controls (Fig. 6a and b). While all mice revealed si-
milar macrophage counts (p = 0.98) (Fig. 6b), indicating that the effect
on vascular inflammation is highly selective.

4. Discussion

This study confirms CXCL8 hyper-expression and enhanced activa-
tion of the CXCL8 axis as a distinctive feature of AAA disease.
Interference with the oral CXCL8 antagonist fully abrogated AAA for-
mation, characterizing this axis as a potential pharmaceutical target for
AAA.

Our previous work identified CXCL8 hyper-expression as a dis-
tinctive and prominent feature of human AAA disease.[13] We first
performed an independent confirmatory validation of the CXCL-8
hyper-expression on aneurysm wall samples from a distinct, and large
patient cohort (Aneurysm Express) using a different analysis platform
(Luminex). Immunohistochemistry for CXCL8 distribution in AAA dis-
ease indicated comprehensive expression in both leucocytes as well as
mesenchymal cells. This pattern was clearly distinct from advanced
atherosclerotic disease in which expression was predominantly con-
fined to the intima, in particular to foam cells.

In humans CXCL8 signals through the CXCR1 and -2 receptors.
These receptors have different affinities, suggesting distinct responses
at varying CXCL8 levels. Although the activities are thought to largely
overlap, there are indications that they may mediate distinct aspects of
CXCL-8 mediated inflammation [22]. Reportedly, both receptors share
a broad expression pattern, which includes a wide variety of leucocytes
, mesenchymal cells (smooth muscle cells, fibroblasts) and endothelial
cells. Immunohistochemical double staining (not shown) for CXCR1
and 2 showed abundant receptor expression both leucocytes as well as
smooth muscle cells/myofibroblasts of the aneurysm wall. Observations
above not only identify CXCL8 hyper-expression as a clear distinctive
feature between AAA and atherosclerotic disease, but also show that the
transcriptional machinery required for CXCL8 signaling is present in
AAA. Exaggerated CXCLS8 signaling in AAA compared to atherosclerotic
wall specimens was shown by Ingenuity-based pathway which ranked
CXCL-8 signaling and granulocyte adhesion and diapedesis among the
top upregulated pathways in AAA, and by enhanced ERK1/2 and
PKCA/¢ phosphorylation in AAA wall.

CXCL8 classically associates with neutrophil influx and neutrophil-
mediated inflammation. CXCL8 not only acts as a strong chemo-at-
tracted for neutrophils, but it also increases neutrophil tissue content by
increasing neutrophil half-life by preventing apoptosis [23]. Infiltrating
neutrophils may critically contribute to the proteolytic imbalance of
AAA disease through release of multiple matrix degrading proteases
such as the serine protease neutrophil elastase, and metalloproteinases
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Fig. 4. Neutrophil abundance in human AAA. 4 Representative immunohistochemical staining showing aortic wall neutrophil distribution (Myeloperoxidase (MPO) and MMP-8
(Neutrophil collagenase)) in AAA and control aorta. Overview 5X (bar = 500 pm), details 40 X (bar = 100 um).
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Fig. 5. The CXCR1/2 antagonist DF2156A fully abrogates AAA formation. Relative
change (% change from baseline diameter) in aorta diameter 14 days after elastase
treatment. The oral CXCR1/2 antagonist DF2156 prevents aneurysm formation in the
elastase model of AAA disease (p < 0.001).

MMP8 (neutrophil collagenase) and MMP9 (neutrophil gelatinase).
Neutrophil-derived proteases further impair the proteolytic imbalance
by their ability to inactivated endogenous protease-inhibitors such as
TIMPs (through the action of neutrophil elastase) and cystatin C
(through MMP9 and neutrophil elastase) [5]. This latter response ap-
pears responsible for the secondary TIMP-1 and Cystatin C deficiencies
in AAA [5]. Experimentally, a crucial role for neutrophils in AAA dis-
ease is emphasized by several animal studies in which interference with
either neutrophil activation or infiltration alleviates AAA formation
and/or progression [8,24,25].

Apart from its classical role on neutrophils, CXCL8 also influences
other leucocytes (in particular M1 macrophages [26]) thereby further
contributing to the perpetuation of a pro-inflammatory environment
[27], and exerts potent pro-angiogenic effects. Angiogenesis is a char-
acteristic feature that has been linked to vascular inflammation and
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AAA rupture, and as such has been brought forward as a therapeutic
target for pharmaceutical AAA stabilization [28].

The CXCL8-signaling pathway has long been identified as potential
pharmacological target for several acute and chronic inflammatory
conditions [21,29-34]. Combined CXCR1/2 [30,30,32] and selective
CXCR2 inhibitors are currently under clinical evaluation [31,32,34].

We tested the ability of the combined CXCR1/2 antagonist DF2156A
to inhibit AAA formation in an established murine model of the disease.
A single daily dose strongly reduced AAA formation; in fact the minimal
dilatation observed presumably reflects the effect of pressure-perfusion
and/or the loss of elastic recoil by the elastase treatment, and not the
influx of any inflammatory cells. The effects exerted by DF2156A in the
elastase model by far exceeded the effects reported for other established
anti-inflammatory agents, such as doxycycline [35], indomethacin [36]
or cyclosporin [37]. Apart from interference with CXCL8 signaling,
CXCR1/2 inhibitors may also interfere with MIF an alternative, but
more promiscuous CXCR1/2 ligand [38]. This ligand has been im-
plicated in AAA disease [39], but is only moderately upregulated in
human AAA disease compared the aortic atherosclerotic disease [13],
and is not identified as a differentially upregulated pathway in the In-
genuity pathway analysis.

Considering the apparent failure of medical stabilization of small
AAA so far, the potency of CXCR1/2 inhibition in vivo is remarkable
and merits clinical evaluation. As mice only express CXCR2, we could
not test the contribution of each receptor to the process of clinical AAA
formation. Consequently it is unclear whether clinical trial with selec-
tive CXCR2 inhibitors would be equally effective as a combined
CXCR1/2 antagonist.

In conclusion, to our knowledge, this study is the first to demon-
strate full abrogation of aneurysm formation in the murine elastase
model, emphasizing the critical role of the CXCR2-axis in aneurysm
formation in the model. This and along with the clinical data, identifies
activation of the CXCL8-pathway as a distinctive feature of AAA and
characterizes this pathway as a promising (possibly the most promising)
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Fig. 6. The CXCR1/2 antagonist DF2156A quenches vascular inflammation and preserves the aortic matrix following elastase infusion. The oral CXCR1/2 antagonist DF2156 quenches
vascular inflammation (reduced leucocyte (CD45 staining), macrophage content (MAC3 staining) and MMP9 content) and preserves the aortic matrix (adventitial collagen content and
medial elastin breaks) following elastase infusion. All data shown is for day 14 following elastase exposure.

target for the medical stabilization of growing AAA.
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