9 research outputs found

    Nonordered dendritic mesoporous silica nanoparticles as promising platforms for advanced methods of diagnosis and therapies

    Get PDF
    Dendritic mesoporous silica nanoparticles (DMSNs) are a new generation of porous materials that have gained great attention compared to other mesoporous silicas due to attractive properties, including straightforward synthesis methods, modular surface chemistry, high surface area, tunable pore size, chemical inertness, particle size distribution, excellent biocompatibility, biodegradability, and high pore volume compared with conventional mesoporous materials. The last years have witnessed a blooming growth of the extensive utilization of DMSNs as an efficient platform in a broad spectrum of biomedical and industrial applications, such as catalysis, energy harvesting, biosensing, drug/gene delivery, imaging, theranostics, and tissue engineering. DMSNs are considered great candidates for nanomedicine applications due to their ease of surface functionalization for targeted and controlled therapeutic delivery, high therapeutic loading capacity, minimizing adverse effects, and enhancing biocompatibility. In this review, we will extensively detail state-of-the-art studies on recent advances in synthesis methods, structure, properties, and applications of DMSNs in the biomedical field with an emphasis on the different delivery routes, cargos, and targeting approaches and a wide range of therapeutic, diagnostic, tissue engineering, vaccination applications and challenges and future implications of DMSNs as cutting-edge technology in medicine

    Polymer Gels Constructed Through Metal–Ligand Coordination

    No full text
    In the past few years, combining supramolecular and macromolecular chemistries has become of great interest to yield dynamic and responsive assemblies with self-restructuring abilities. Among them, polymer networks, that are held together by one or a combination of supramolecular interactions, offer new possibilities to scientists for the creation of artificial materials with selfhealing properties. In particular, incorporating coordination complexes into polymeric architectures opens up the possibility of imparting the physicochemical properties of both partners to the resulting material. Here, recent achievements in the field of supramolecular gels that are formed via self-assembly of oligo- and polymeric units through reversible metal–ligand interactions are reviewed. The different strategies and routes for the elaboration of those materials are reported as well as the properties that the coordination centers confer to the supramolecular assemblies

    Die Pathologie der Avitaminosen und Hypervitaminosen

    No full text
    corecore