156 research outputs found

    Optical rectification and down-conversion of fs pulses into mid-IR and THz range in GaSe1-xSx

    Get PDF
    Design of top S-doped GaSe growth technology is completed. New methods for characterization of high optical quality crystals are proposed that allowed selection optimally doped crystals. Frequency conversion of fs pulses into 6.5–35 μm and into 0.2–4.5 THz is realized. S-doped crystals demonstrated advantages from 50–70% in the first experiments up to 8.5–15 times in the following experiments depending on experimental conditions. © (2015) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only

    Linear and nonlinear optical properties of trigonal borate crystals K7MIn2-xYbx(B5O10)3 (M = Ca, Sr, Ba; x=0…2) with isolated B5O10 units

    Get PDF
    Noncentrosymmetric borates K7MIn2−xYbx(B5O10)3 (M = Ca, Sr, Ba; x = 0…2) were synthesized by the solid state reaction and the crystals were successfully grown by the top seeded solution growth method using the K2O-B2O3-MF2 flux. According to Rietveld refinement, the crystal structure belongs to the noncentrosymmetric R32 space group. Also, the octahedrally coordinated In atoms are located at wide ranges ∼8 Å which may be promising for phosphor and laser applications. Samples with ytterbium show a characteristic emission band in the range of 950–1050 nm related to the 2F5/2 → 2F7/2 transition of Yb3+ ions that is commonly used for laser generation. IR, Raman and absorption spectra were obtained for the samples as well. The short cut edge of UV absorption, SHG intensity comparable with KDP and low concentration quenching of luminescence suggest that the K7MIn2−xYbx(B5O10)3 borates are promising self-frequency doubling materials

    Circular dichroism and superdiffusive transport at the surface of BiTeI

    Get PDF
    et al.We investigate the electronic states of BiTeI after the optical pumping with circularly polarized photons. Our data show that photoexcited electrons reach an internal thermalization within 300 fs of the arrival of the pump pulse. Instead, the dichroic contrast generated by the circularly polarized light relaxes on a time scale shorter than 80 fs. This result implies that orbital and spin polarization created by the circular pump pulse rapidly decays via manybody interaction. The persistent dichroism at longer delay times is due to the helicity dependence of superdiffussive transport. We ascribe it to the lack of inversion symmetry in an electronic system far from equilibrium conditions.We acknowledge that the FemtoARPES project was financially supported by the RTRA Triangle de la Physique, and the ANR program Chaires d’Excellence (Nr. ANR-08-CEXCEC8-011-01).Peer Reviewe

    Modification and ab-initio spectroscopic application of modified commerce terahertz spectrometer by using homemade parts

    Get PDF
    Ab-initio study on modification of commerce terahertz spectrometer with time resolution Z-3 (Zomega, USA) by substitution of ZnTe and GaP detectors and LT-GaAs generator for homemade of pure and S-doped GaSe is carried out. It was established that in spite of not optimized parameters pure and doped GaSe:S(0.3 mass%) crystal are comparable, relatively, in generation efficiency and detection sensitivity to commerce units due to lower nonlinear optical loss and much higher damage threshold. The advantages are in force from pump fluences of below 5 mJ/cm2 for pure GaSe. The closer S-doping to optimal concentration, the lover fluences resulting in the advantages. Pure and S-doped GaSe demonstrate higher reliability and larger dynamic range of operation. Recorded absorption spectra well match known spectra. © (2015) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only

    Unoccupied Topological States on Bismuth Chalcogenides

    Full text link
    The unoccupied part of the band structure of topological insulators Bi2_2Tex_{x}Se3x_{3-x} (x=0,2,3x=0,2,3) is studied by angle-resolved two-photon photoemission and density functional theory. For all surfaces linearly-dispersing surface states are found at the center of the surface Brillouin zone at energies around 1.3 eV above the Fermi level. Theoretical analysis shows that this feature appears in a spin-orbit-interaction induced and inverted local energy gap. This inversion is insensitive to variation of electronic and structural parameters in Bi2_2Se3_3 and Bi2_2Te2_2Se. In Bi2_2Te3_3 small structural variations can change the character of the local energy gap depending on which an unoccupied Dirac state does or does not exist. Circular dichroism measurements confirm the expected spin texture. From these findings we assign the observed state to an unoccupied topological surface state

    Termination-dependent surface properties in the giant-Rashba semiconductors BiTeX (X=Cl, Br, I)

    Get PDF
    Under the terms of the Creative Commons Attribution License 3.0 (CC-BY).The noncentrosymmetric semiconductors BiTeX(X=Cl,Br,I) show large Rashba-type spin-orbit splittings in their electronic structure making them candidate materials for spin-based electronics. However, BiTeI(0001) single-crystal surfaces usually consist of stacking-fault-induced domains of Te and I terminations implying a spatially inhomogeneous electronic structure. Here we combine scanning tunneling microscopy, photoelectron spectroscopy (ARPES, XPS), and density functional theory calculations to systematically investigate the structural and electronic properties of BiTeX(0001) surfaces. For X=Cl, Br we observe macroscopic single-terminated surfaces. We discuss chemical characteristics among the three materials in terms of bonding character, surface electronic structure, and surface morphology.This work was financially supported by the Deutsche Forschungsgemeinschaft through FOR1162 and partly by the Ministry of Education and Science of Russian Federation (Grant No. 2.8575.2013), the Russian Foundation for Basic Research (Grants No. 15-02-01797 and No. 15-02-02717), and Saint Petersburg State University (Project No. 11.50.202.2015).Peer Reviewe
    corecore