5 research outputs found

    The Use of Artificial Neural Networks to Predict the Physicochemical Characteristics of Water Quality in Three District Municipalities, Eastern Cape Province, South Africa

    No full text
    Reliable prediction of water quality changes is a prerequisite for early water pollution control and is vital in environmental monitoring, ecosystem sustainability, and human health. This study uses Artificial Neural Network (ANN) technique to develop the best model fits to predict water quality parameters by employing multilayer perceptron (MLP) neural network and the radial basis function (RBF) neural network, using data collected from three district municipalities. Two input combination models, MLP-4-5-4 and MLP-4-9-4, were trained, verified, and tested for their predictive performance ability, and their physicochemical prediction accuracy was compared by using each model’s observed data with the predicted data. The MLP-4-5-4 model showed a better understanding of the data sets and water quality predictive ability giving an MSE of 39.06589 and a correlation coefficient (R2) of the observed and the predicted water quality of 0.989383 compared to the MLP-4-9-4 model (R2 = 0.993532, MSE = 39.03087). These results apply to natural water resources management in South Africa and similar catchment systems. The MLP-4-5-4 system can be scaled up for future water quality prediction of the Waste Water Treatment Plants (WWTPs), groundwater, and surface water while raising awareness among the public and industry on future water quality

    The impact and recovery of asteroid 2018 LA

    Get PDF
    International audienceThe June 2, 2018 impact of asteroid 2018 LA over Botswana is only the second asteroid detected in space prior to impacting over land. Here, we report on the successful recovery of meteorites. Additional astrometric data refine the approach orbit and define the spin period and shape of the asteroid. Video observations of the fireball constrain the asteroid's position in its orbit and were used to triangulate the location of the fireball's main flare over the Central Kalahari Game Reserve. Twenty three meteorites were recovered. A consortium study of eight of these classifies Motopi Pan as an HED polymict breccia derived from howardite, cumulate and basaltic eucrite, and diogenite lithologies. Before impact, 2018 LA was a solid rock of ~156 cm diameter with high bulk density ~2.85 g cm−3, a relatively low albedo pV ~ 0.25, no significant opposition effect on the asteroid brightness, and an impact kinetic energy of ~0.2 kt. The orbit of 2018 LA is consistent with an origin at Vesta (or its Vestoids) and delivery into an Earth impacting orbit via the Îœ6 resonance. The impact that ejected 2018 LA in an orbit toward Earth occurred 22.8 ± 3.8 Ma ago. Zircons record a concordant U Pb age of 4563 ± 11 Ma and a consistent 207Pb/206Pb age of 4563 ± 6 Ma. A much younger Pb Pb phosphate resetting age of 4234 ± 41 Ma was found. From this impact chronology, we discuss what is the possible source crater of Motopi Pan and the age of Vesta's Veneneia impact basin
    corecore