286 research outputs found
Improving liquid chromatography efficiency: channels structured with micro-pillars
Band dispersion has been measured in micromachined separation channels structured with orderly disposed cylindrical micropillars. It was found that with an optimal channel design the band broadening could be lower by a factor of 3 than in packed columns with a comparable particle size. The positioning of the row of pillars closest to the side wall was a decisive factor in influencing band broadening
Partial Wave Analyses of the pp data alone and of the np data alone
We present results of the Nijmegen partial-wave analyses of all NN scattering
data below Tlab = 500 MeV. We have been able to extract for the first time the
important np phase shifts for both I = 0 and I = 1 from the np scattering data
alone. This allows us to study the charge independence breaking between the pp
and np I = 1 phases. In our analyses we obtain for the pp data chi^2_{min}/Ndf
= 1.13 and for the np data chi^2_{min}/Ndf = 1.12.Comment: Report THEF-NYM 94.04, 4 pages LaTeX, one PostScript figure appended.
Contribution to the 14th Few-Body Conference, May 26 - 31, Williamsburg, V
Characterization of aggregates of surface modified fullerenes by asymmetrical flow field-flow fractionation with multi-angle light scattering detection
Fullerenes are carbon nanoparticles with widespread biomedical, commercial and industrial applications. Attributes such as their tendency to aggregate and aggregate size and shape impact their ability to be transported into and through the environment and living tissues. Knowledge of these properties is therefore valuable for their human and environmental risk assessment as well as to control their synthesis and manufacture. In this work, asymmetrical flow-field flow fractionation (AF4) coupled to multi-angle light scattering (MALS) was used for the first time to study the size distribution of surface modified fullerenes with both polyhydroxyl and carboxyl functional groups in aqueous solutions having different pH (6.5-11) and ionic strength values (0-200 mM) of environmental relevance. Fractionation key parameters such as flow rates, flow programming, and membrane material were optimized for the selected fullerenes. The aggregation of the compounds studied appeared to be indifferent to changes in solution pH, but was affected by changes in the ionic strength. Polyhydroxy-fullerenes were found to be present mostly as 4 nm aggregates in water without added salt, but showed more aggregation at high ionic strength, with an up to 10-fold increase in their mean hydrodynamic radii (200 mM), due to a decrease in the electrostatic repulsion between the nanoparticles. Carboxy-fullerenes showed a much stronger aggregation degree in water (50 100 nm). Their average size and recoveries decreased with the increase in the salt concentration. This behavior can be due to enhanced adsorption of the large particles to the membrane at high ionic strength, because of their higher hydrophobicity and much larger particle sizes compared to polyhydroxy-fullerenes. The method performance was evaluated by calculating the run-to-run precision of the retention time (hydrodynamic radii), and the obtained RSD values were lower than 1 %. MALS measurements showed aggregate sizes that were in good agreement with the AF4 data. A comparison of the scattering radii from the MALS with the hydrodynamic radii obtained from the retention times in AF4 indicated that the aggregate shapes are far from spherical. TEM images of the fullerenes in the dry state also showed branched and irregular clusters
Experimental investigation of the band broadening originating from the top and bottom wall in micromachined non-porous pillar array columns
We report on the experimental investigation of the effect of the top and bottom wall plates in micromachined nonporous pillar array columns. It has been found that their presence yields an additional c-term type of band broadening that can make up a significant fraction of the total band broadening (at least if considering nonporous pillars and a nonretained tracer). Their presence also induces a clear (downward) shift of the optimal velocity. These observations are, however in excellent quantitative agreement with the theoretical expectations obtained from a computational fluid dynamics study. The presently obtained experimental results, hence, demonstrate that the employed high aspect ratio Bosch etching process can be used to fabricate micromachined pillar arrays that are sufficiently refined to achieve the theoretical performance limit
Aggregation behaviour of fullerenes in aqueous solutions: a capillary electrophoresis and asymmetric flow-field flow fractionation study
In this work the electrophoretic behaviour of hydrophobic fullerenes (C60, C70 and C60-pyrr) and water soluble fullerenes (C60(OH)24, C120(OH)30, C60-pyrr tris acid and C60CHCOOH) in micellar electrokinetic capillary chromatography (MECC) was evaluated. The aggregation behavior of the water soluble compounds in MECC at different buffer and SDS concentrations and pH values of the background electrolyte (BGE) was studied by monitoring the changes observed in the electrophoretic pattern of the peaks. Broad and distorted peaks that can be attributed to fullerene aggregation were obtained in MECC which became narrower and more symmetric by working at low buffer and SDS concentrations (below the critical micelle concentration, capillary zone electrophoresis (CZE) conditions). For the characterization of the suspected aggregates formed (size and shape), asymmetrical flow field-flow fractionation (AF4) and transmission electron microscopy (TEM) were used. The results showed that the increase in the buffer concentration promoted the aggregation of the particles while the presence of SDS micelles revealed multiple peaks corresponding to particles of different aggregation degree. Furthermore, MECC has been applied for the first time for the analysis of C60 in two different cosmetic products (i.e., anti-aging serum and facial mask)
- âŠ