486 research outputs found
Recommended from our members
Designing theoretically-informed implementation interventions
Clinical and health services research is continually producing new findings that may contribute to effective and efficient patient care. However, the transfer of research findings into practice is unpredictable and can be a slow and haphazard process. Ideally, the choice of implementation strategies would be based upon evidence from randomised controlled trials or systematic reviews of a given implementation strategy. Unfortunately, reviews of implementation strategies consistently report effectiveness some, but not all of the time; possible causes of this variation are seldom reported or measured by the investigators in the original studies. Thus, any attempts to extrapolate from study settings to the real world are hampered by a lack of understanding of the effects of key elements of individuals, interventions, and the settings in which they were trialled. The explicit use of theory offers a way of addressing these issues and has a number of advantages, such as providing: a generalisable framework within which to represent the dimensions that implementation studies address, a process by which to inform the development and delivery of interventions, a guide when evaluating, and a way to allow for an exploration of potential causal mechanisms. However, the use of theory in designing implementation interventions is methodologically challenging for a number of reasons, including choosing between theories and faithfully translating theoretical constructs into interventions. The explicit use of theory offers potential advantages in terms of facilitating a better understanding of the generalisability and replicability of implementation interventions. However, this is a relatively unexplored methodological area
Immunization coverage and risk factors for failure to immunize within the Expanded Programme on Immunization in Kenya after introduction of new Haemophilus influenzae type b and hepatitis b virus antigens
Background: Kenya introduced a pentavalent vaccine including the DTP, Haemophilus influenzae type b and hepatitis b virus antigens in Nov 2001 and strengthened immunization services. We estimated immunization coverage before and after introduction, timeliness of vaccination and risk factors for failure to immunize in Kilifi district, Kenya.
Methods: In Nov 2002 we performed WHO cluster-sample surveys of > 200 children scheduled for vaccination before or after introduction of pentavalent vaccine. In Mar 2004 we conducted a simple random sample (SRS) survey of 204 children aged 9 - 23 months. Coverage was estimated by inverse Kaplan-Meier survival analysis of vaccine- card and mothers' recall data and corroborated by reviewing administrative records from national and provincial vaccine stores. The contribution to timely immunization of distance from clinic, seasonal rainfall, mother's age, and family size was estimated by a proportional hazards model.
Results: Immunization coverage for three DTP and pentavalent doses was 100% before and 91% after pentavalent vaccine introduction, respectively. By SRS survey, coverage was 88% for three pentavalent doses. The median age at first, second and third vaccine dose was 8, 13 and 18 weeks. Vials dispatched to Kilifi District during 2001 - 2003 would provide three immunizations for 92% of the birth cohort. Immunization rate ratios were reduced with every kilometre of distance from home to vaccine clinic (HR 0.95, CI 0.91 - 1.00), rainy seasons ( HR 0.73, 95% CI 0.61 - 0.89) and family size, increasing progressively up to 4 children ( HR 0.55, 95% CI 0.41 - 0.73).
Conclusion: Vaccine coverage was high before and after introduction of pentavalent vaccine, but most doses were given late. Coverage is limited by seasonal factors and family siz
Synthetic three-dimensional atomic structures assembled atom by atom
We demonstrate the realization of large, fully loaded, arbitrarily-shaped
three-dimensional arrays of single atoms. Using holographic methods and
real-time, atom-by-atom, plane-by-plane assembly, we engineer atomic structures
with up to 72 atoms separated by distances of a few micrometres. Our method
allows for high average filling fractions and the unique possibility to obtain
defect-free arrays with high repetition rates. These results find immediate
application for the quantum simulation of spin Hamiltonians using Rydberg atoms
in state-of-the-art platforms, and are very promising for quantum-information
processing with neutral atoms.Comment: 5 pages, 3 figure
Effect of Soluble ICAM-1 on a Sjögren's Syndrome-like Phenotype in NOD Mice Is Disease Stage Dependent
Intercellular adhesion molecule-1 (ICAM-1) is involved in migration and co-stimulation of T and B cells. Membrane bound ICAM-1 is over expressed in the salivary glands (SG) of Sjögren's syndrome (SS) patients and has therefore been proposed as a potential therapeutic target. To test the utility of ICAM-1 as a therapeutic target, we used local gene therapy in Non Obese Diabetic (NOD) mice to express soluble (s)ICAM-1 to compete with membrane bound ICAM-1 for binding with its receptor. Therapy was given prior to and just after the influx of immune cells into the SG.A recombinant serotype 2 adeno associated virus (rAAV2) encoding ICAM-1/Fc was constructed and its efficacy tested in the female NOD mice after retrograde instillation in SG at eight (early treatment) and ten (late treatment) weeks of age. SG inflammation was evaluated by focus score and immunohistochemical quantification of infiltrating cell types. Serum and SG tissue were analyzed for immunoglobulins (Ig).Early treatment with ICAM-1/Fc resulted in decreased average number of inflammatory foci without changes in T and B cell composition. In contrast, late treated mice did not show any change in focus scores, but immunohistochemical staining showed an increase in the overall number of CD4+ and CD8+ T cells. Moreover, early treated mice showed decreased IgM within the SGs, whereas late treated mice had increased IgM levels, and on average higher IgG and IgA.Blocking the ICAM-1/LFA-1 interaction with sICAM-1/Fc may result in worsening of a SS like phenotype when infiltrates have already formed within the SG. As a treatment for human SS, caution should be taken targeting the ICAM-1 axis since most patients are diagnosed when inflammation is clearly present within the SG
Anchoring of proteins to lactic acid bacteria
The anchoring of proteins to the cell surface of lactic acid bacteria (LAB) using genetic techniques is an exciting and emerging research area that holds great promise for a wide variety of biotechnological applications. This paper reviews five different types of anchoring domains that have been explored for their efficiency in attaching hybrid proteins to the cell membrane or cell wall of LAB. The most exploited anchoring regions are those with the LPXTG box that bind the proteins in a covalent way to the cell wall. In recent years, two new modes of cell wall protein anchoring have been studied and these may provide new approaches in surface display. The important progress that is being made with cell surface display of chimaeric proteins in the areas of vaccine development and enzyme- or whole-cell immobilisation is highlighted.
Selective Processing of Multiple Features in the Human Brain: Effects of Feature Type and Salience
Identifying targets in a stream of items at a given constant spatial location relies on selection of aspects such as color, shape, or texture. Such attended (target) features of a stimulus elicit a negative-going event-related brain potential (ERP), termed Selection Negativity (SN), which has been used as an index of selective feature processing. In two experiments, participants viewed a series of Gabor patches in which targets were defined as a specific combination of color, orientation, and shape. Distracters were composed of different combinations of color, orientation, and shape of the target stimulus. This design allows comparisons of items with and without specific target features. Consistent with previous ERP research, SN deflections extended between 160–300 ms. Data from the subsequent P3 component (300–450 ms post-stimulus) were also examined, and were regarded as an index of target processing. In Experiment A, predominant effects of target color on SN and P3 amplitudes were found, along with smaller ERP differences in response to variations of orientation and shape. Manipulating color to be less salient while enhancing the saliency of the orientation of the Gabor patch (Experiment B) led to delayed color selection and enhanced orientation selection. Topographical analyses suggested that the location of SN on the scalp reliably varies with the nature of the to-be-attended feature. No interference of non-target features on the SN was observed. These results suggest that target feature selection operates by means of electrocortical facilitation of feature-specific sensory processes, and that selective electrocortical facilitation is more effective when stimulus saliency is heightened
Exoplanet Atmosphere Measurements from Transmission Spectroscopy and other Planet-Star Combined Light Observations
It is possible to learn a great deal about exoplanet atmospheres even when we
cannot spatially resolve the planets from their host stars. In this chapter, we
overview the basic techniques used to characterize transiting exoplanets -
transmission spectroscopy, emission and reflection spectroscopy, and full-orbit
phase curve observations. We discuss practical considerations, including
current and future observing facilities and best practices for measuring
precise spectra. We also highlight major observational results on the
chemistry, climate, and cloud properties of exoplanets.Comment: Accepted review chapter; Handbook of Exoplanets, eds. Hans J. Deeg
and Juan Antonio Belmonte (Springer-Verlag). 22 pages, 6 figure
- …