6 research outputs found

    Visualizing a Task Performer’s Gaze to Foster Observers’ Performance and Learning : a Systematic Literature Review on Eye Movement Modeling Examples

    Get PDF
    Eye movement modeling examples (EMMEs) are instructional videos (e.g., tutorials) that visualize another person’s gaze location while they demonstrate how to perform a task. This systematic literature review provides a detailed overview of studies on the effects of EMME to foster observers’ performance and learning and highlights their differences in EMME designs. Through a broad, systematic search on four relevant databases, we identified 72 EMME studies (78 experiments). First, we created an overview of the different study backgrounds. Studies most often taught tasks from the domains of sports/physical education, medicine, aviation, and STEM areas and had different rationales for displaying EMME. Next, we outlined how studies differed in terms of participant characteristics, task types, and the design of the EMME materials, which makes it hard to infer how these differences affect performance and learning. Third, we concluded that the vast majority of the experiments showed at least some positive effects of EMME during learning, on tests directly after learning, and tests after a delay. Finally, our results provide a first indication of which EMME characteristics may positively influence learning. Future research should start to more systematically examine the effects of specific EMME design choices for specific participant populations and task types

    A comprehensive analysis of prognostic signatures reveals the high predictive capacity of the proliferation, immune response and RNA splicing modules in breast cancer.

    Get PDF
    INTRODUCTION: Several gene expression signatures have been proposed and demonstrated to be predictive of outcome in breast cancer. In the present article we address the following issues: Do these signatures perform similarly? Are there (common) molecular processes reported by these signatures? Can better prognostic predictors be constructed based on these identified molecular processes? METHODS: We performed a comprehensive analysis of the performance of nine gene expression signatures on seven different breast cancer datasets. To better characterize the functional processes associated with these signatures, we enlarged each signature by including all probes with a significant correlation to at least one of the genes in the original signature. The enrichment of functional groups was assessed using four ontology databases. RESULTS: The classification performance of the nine gene expression signatures is very similar in terms of assigning a sample to either a poor outcome group or a good outcome group. Nevertheless the concordance in classification at the sample level is low, with only 50% of the breast cancer samples classified in the same outcome group by all classifiers. The predictive accuracy decreases with the number of poor outcome assignments given to a sample. The best classification performance was obtained for the group of patients with only good outcome assignments. Enrichment analysis of the enlarged signatures revealed 11 functional modules with prognostic ability. The combination of the RNA-splicing and immune modules resulted in a classifier with high prognostic performance on an independent validation set. CONCLUSIONS: The study revealed that the nine signatures perform similarly but exhibit a large degree of discordance in prognostic group assignment. Functional analyses indicate that proliferation is a common cellular process, but that other functional categories are also enriched and show independent prognostic ability. We provide new evidence of the potentially promising prognostic impact of immunity and RNA-splicing processes in breast cancer.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are
    corecore