2,365 research outputs found
Integrating Earth observation with field data and model simulations the ISECA project
The cross-border cooperation ISECA (Information System on the Eutrophication of our CoAstal Seas) is a demonstration project to improve the exchange of data and scientific insights related to the eutrophication of coastal waters in the English Channel and the Southern North Sea. The Web-based Application Server (WAS) demonstrates the added value of combining earth observation and in-situ data on marine eutrophication with the outcomes of model simulations. The WAS allows visualization of Earth Observation data hosted by partner institutes and provides access to map layers showing different model scenarios, as well as functionalities for up- and downloading of in-situ data, including trend analysis. The envisaged en-users include the scientific community, marine managers, and general public
Carbon monoxide and water vapor in the atmosphere of the non-transiting exoplanet HD 179949 b
(Abridged) In recent years, ground-based high-resolution spectroscopy has
become a powerful tool for investigating exoplanet atmospheres. It allows the
robust identification of molecular species, and it can be applied to both
transiting and non-transiting planets. Radial-velocity measurements of the star
HD 179949 indicate the presence of a giant planet companion in a close-in
orbit. Here we present the analysis of spectra of the system at 2.3 micron,
obtained at a resolution of R~100,000, during three nights of observations with
CRIRES at the VLT. We targeted the system while the exoplanet was near superior
conjunction, aiming to detect the planet's thermal spectrum and the radial
component of its orbital velocity. We detect molecular absorption from carbon
monoxide and water vapor with a combined S/N of 6.3, at a projected planet
orbital velocity of K_P = (142.8 +- 3.4) km/s, which translates into a planet
mass of M_P = (0.98 +- 0.04) Jupiter masses, and an orbital inclination of i =
(67.7 +- 4.3) degrees, using the known stellar radial velocity and stellar
mass. The detection of absorption features rather than emission means that,
despite being highly irradiated, HD 179949 b does not have an atmospheric
temperature inversion in the probed range of pressures and temperatures. Since
the host star is active (R_HK > -4.9), this is in line with the hypothesis that
stellar activity damps the onset of thermal inversion layers owing to UV flux
photo-dissociating high-altitude, optical absorbers. Finally, our analysis
favors an oxygen-rich atmosphere for HD 179949 b, although a carbon-rich planet
cannot be statistically ruled out based on these data alone.Comment: 10 pages, 9 figures. Accepted for publication in Astronomy and
Astrophysic
Partial Wave Analyses of the pp data alone and of the np data alone
We present results of the Nijmegen partial-wave analyses of all NN scattering
data below Tlab = 500 MeV. We have been able to extract for the first time the
important np phase shifts for both I = 0 and I = 1 from the np scattering data
alone. This allows us to study the charge independence breaking between the pp
and np I = 1 phases. In our analyses we obtain for the pp data chi^2_{min}/Ndf
= 1.13 and for the np data chi^2_{min}/Ndf = 1.12.Comment: Report THEF-NYM 94.04, 4 pages LaTeX, one PostScript figure appended.
Contribution to the 14th Few-Body Conference, May 26 - 31, Williamsburg, V
The Web-based Application Server: Combining earth observation with in-situ data and modelling. ISECA Final Report D3.1
The report describes the purpose, architecture and functionalities of the ISECA Web-based Application Server (WAS). This web-based information system combines earth observation and in-situ data with examples of model simulations related to eutrophication for the 2Seas Territorial Waters of the Southern North Sea. Step-by-step instructions on how to use the WAS are included in this report. More background information on the problem of eutrophication and eutrophication modelling is found in ISECA report D3.2 - Eutrophication problems, causes and potential solutions, and exchange of reusable model building components for the integrated simulation of coastal eutrophication
Detection of water absorption in the day side atmosphere of HD 189733 b using ground-based high-resolution spectroscopy at 3.2 microns
We report a 4.8 sigma detection of water absorption features in the day side
spectrum of the hot Jupiter HD 189733 b. We used high-resolution (R~100,000)
spectra taken at 3.2 microns with CRIRES on the VLT to trace the
radial-velocity shift of the water features in the planet's day side atmosphere
during 5 h of its 2.2 d orbit as it approached secondary eclipse. Despite
considerable telluric contamination in this wavelength regime, we detect the
signal within our uncertainties at the expected combination of systemic
velocity (Vsys=-3 +5-6 km/s) and planet orbital velocity (Kp=154 +14-10 km/s),
and determine a H2O line contrast ratio of (1.3+/-0.2)x10^-3 with respect to
the stellar continuum. We find no evidence of significant absorption or
emission from other carbon-bearing molecules, such as methane, although we do
note a marginal increase in the significance of our detection to 5.1 sigma with
the inclusion of carbon dioxide in our template spectrum. This result
demonstrates that ground-based, high-resolution spectroscopy is suited to
finding not just simple molecules like CO, but also to more complex molecules
like H2O even in highly telluric contaminated regions of the Earth's
transmission spectrum. It is a powerful tool that can be used for conducting an
immediate census of the carbon- and oxygen-bearing molecules in the atmospheres
of giant planets, and will potentially allow the formation and migration
history of these planets to be constrained by the measurement of their
atmospheric C/O ratios.Comment: 5 pages, 4 figures, accepted for publication in MNRAS Letter
Exoplanet atmospheres with GIANO. I. Water in the transmission spectrum of HD 189733b
High-resolution spectroscopy (R 20,000) at near-infrared wavelengths
can be used to investigate the composition, structure, and circulation patterns
of exoplanet atmospheres. However, up to now it has been the exclusive dominion
of the biggest telescope facilities on the ground, due to the large amount of
photons necessary to measure a signal in high-dispersion spectra. Here we show
that spectrographs with a novel design - in particular a large spectral range -
can open exoplanet characterisation to smaller telescope facilities too. We aim
to demonstrate the concept on a series of spectra of the exoplanet HD 189733 b
taken at the Telescopio Nazionale Galileo with the near-infrared spectrograph
GIANO during two transits of the planet. In contrast to absorption in the
Earth's atmosphere (telluric absorption), the planet transmission spectrum
shifts in radial velocity during transit due to the changing orbital motion of
the planet. This allows us to remove the telluric spectrum while preserving the
signal of the exoplanet. The latter is then extracted by cross-correlating the
residual spectra with template models of the planet atmosphere computed through
line-by-line radiative transfer calculations, and containing molecular
absorption lines from water and methane. By combining the signal of many
thousands of planet molecular lines, we confirm the presence of water vapour in
the atmosphere of HD 189733 b at the 5.5- level. This signal was
measured only in the first of the two observing nights. By injecting and
retrieving artificial signals, we show that the non-detection on the second
night is likely due to an inferior quality of the data. The measured strength
of the planet transmission spectrum is fully consistent with past CRIRES
observations at the VLT, excluding a strong variability in the depth of
molecular absorption lines.Comment: 10 pages, 8 figures. Accepted for publication in Astronomy &
Astrophysics. v2 includes language editin
- …