2,365 research outputs found

    Integrating Earth observation with field data and model simulations the ISECA project

    Get PDF
    The cross-border cooperation ISECA (Information System on the Eutrophication of our CoAstal Seas) is a demonstration project to improve the exchange of data and scientific insights related to the eutrophication of coastal waters in the English Channel and the Southern North Sea. The Web-based Application Server (WAS) demonstrates the added value of combining earth observation and in-situ data on marine eutrophication with the outcomes of model simulations. The WAS allows visualization of Earth Observation data hosted by partner institutes and provides access to map layers showing different model scenarios, as well as functionalities for up- and downloading of in-situ data, including trend analysis. The envisaged en-users include the scientific community, marine managers, and general public

    Carbon monoxide and water vapor in the atmosphere of the non-transiting exoplanet HD 179949 b

    Get PDF
    (Abridged) In recent years, ground-based high-resolution spectroscopy has become a powerful tool for investigating exoplanet atmospheres. It allows the robust identification of molecular species, and it can be applied to both transiting and non-transiting planets. Radial-velocity measurements of the star HD 179949 indicate the presence of a giant planet companion in a close-in orbit. Here we present the analysis of spectra of the system at 2.3 micron, obtained at a resolution of R~100,000, during three nights of observations with CRIRES at the VLT. We targeted the system while the exoplanet was near superior conjunction, aiming to detect the planet's thermal spectrum and the radial component of its orbital velocity. We detect molecular absorption from carbon monoxide and water vapor with a combined S/N of 6.3, at a projected planet orbital velocity of K_P = (142.8 +- 3.4) km/s, which translates into a planet mass of M_P = (0.98 +- 0.04) Jupiter masses, and an orbital inclination of i = (67.7 +- 4.3) degrees, using the known stellar radial velocity and stellar mass. The detection of absorption features rather than emission means that, despite being highly irradiated, HD 179949 b does not have an atmospheric temperature inversion in the probed range of pressures and temperatures. Since the host star is active (R_HK > -4.9), this is in line with the hypothesis that stellar activity damps the onset of thermal inversion layers owing to UV flux photo-dissociating high-altitude, optical absorbers. Finally, our analysis favors an oxygen-rich atmosphere for HD 179949 b, although a carbon-rich planet cannot be statistically ruled out based on these data alone.Comment: 10 pages, 9 figures. Accepted for publication in Astronomy and Astrophysic

    Partial Wave Analyses of the pp data alone and of the np data alone

    Get PDF
    We present results of the Nijmegen partial-wave analyses of all NN scattering data below Tlab = 500 MeV. We have been able to extract for the first time the important np phase shifts for both I = 0 and I = 1 from the np scattering data alone. This allows us to study the charge independence breaking between the pp and np I = 1 phases. In our analyses we obtain for the pp data chi^2_{min}/Ndf = 1.13 and for the np data chi^2_{min}/Ndf = 1.12.Comment: Report THEF-NYM 94.04, 4 pages LaTeX, one PostScript figure appended. Contribution to the 14th Few-Body Conference, May 26 - 31, Williamsburg, V

    The Web-based Application Server: Combining earth observation with in-situ data and modelling. ISECA Final Report D3.1

    Get PDF
    The report describes the purpose, architecture and functionalities of the ISECA Web-based Application Server (WAS). This web-based information system combines earth observation and in-situ data with examples of model simulations related to eutrophication for the 2Seas Territorial Waters of the Southern North Sea. Step-by-step instructions on how to use the WAS are included in this report. More background information on the problem of eutrophication and eutrophication modelling is found in ISECA report D3.2 - Eutrophication problems, causes and potential solutions, and exchange of reusable model building components for the integrated simulation of coastal eutrophication

    Detection of water absorption in the day side atmosphere of HD 189733 b using ground-based high-resolution spectroscopy at 3.2 microns

    Get PDF
    We report a 4.8 sigma detection of water absorption features in the day side spectrum of the hot Jupiter HD 189733 b. We used high-resolution (R~100,000) spectra taken at 3.2 microns with CRIRES on the VLT to trace the radial-velocity shift of the water features in the planet's day side atmosphere during 5 h of its 2.2 d orbit as it approached secondary eclipse. Despite considerable telluric contamination in this wavelength regime, we detect the signal within our uncertainties at the expected combination of systemic velocity (Vsys=-3 +5-6 km/s) and planet orbital velocity (Kp=154 +14-10 km/s), and determine a H2O line contrast ratio of (1.3+/-0.2)x10^-3 with respect to the stellar continuum. We find no evidence of significant absorption or emission from other carbon-bearing molecules, such as methane, although we do note a marginal increase in the significance of our detection to 5.1 sigma with the inclusion of carbon dioxide in our template spectrum. This result demonstrates that ground-based, high-resolution spectroscopy is suited to finding not just simple molecules like CO, but also to more complex molecules like H2O even in highly telluric contaminated regions of the Earth's transmission spectrum. It is a powerful tool that can be used for conducting an immediate census of the carbon- and oxygen-bearing molecules in the atmospheres of giant planets, and will potentially allow the formation and migration history of these planets to be constrained by the measurement of their atmospheric C/O ratios.Comment: 5 pages, 4 figures, accepted for publication in MNRAS Letter

    Exoplanet atmospheres with GIANO. I. Water in the transmission spectrum of HD 189733b

    Get PDF
    High-resolution spectroscopy (R ≥\ge 20,000) at near-infrared wavelengths can be used to investigate the composition, structure, and circulation patterns of exoplanet atmospheres. However, up to now it has been the exclusive dominion of the biggest telescope facilities on the ground, due to the large amount of photons necessary to measure a signal in high-dispersion spectra. Here we show that spectrographs with a novel design - in particular a large spectral range - can open exoplanet characterisation to smaller telescope facilities too. We aim to demonstrate the concept on a series of spectra of the exoplanet HD 189733 b taken at the Telescopio Nazionale Galileo with the near-infrared spectrograph GIANO during two transits of the planet. In contrast to absorption in the Earth's atmosphere (telluric absorption), the planet transmission spectrum shifts in radial velocity during transit due to the changing orbital motion of the planet. This allows us to remove the telluric spectrum while preserving the signal of the exoplanet. The latter is then extracted by cross-correlating the residual spectra with template models of the planet atmosphere computed through line-by-line radiative transfer calculations, and containing molecular absorption lines from water and methane. By combining the signal of many thousands of planet molecular lines, we confirm the presence of water vapour in the atmosphere of HD 189733 b at the 5.5-σ\sigma level. This signal was measured only in the first of the two observing nights. By injecting and retrieving artificial signals, we show that the non-detection on the second night is likely due to an inferior quality of the data. The measured strength of the planet transmission spectrum is fully consistent with past CRIRES observations at the VLT, excluding a strong variability in the depth of molecular absorption lines.Comment: 10 pages, 8 figures. Accepted for publication in Astronomy & Astrophysics. v2 includes language editin
    • …
    corecore