127 research outputs found

    Development of Attitude Sensor using Deep Learning

    Get PDF
    A new method for attitude determination utilizing color earth images taken with COTS visible light camera is presented. The traditional earth camera has been used for coarse attitude determination by detecting the edge of the earth, and therefore it can only provide coarse and 2-axis information. In contrast, our method recognizes the ground pattern with an accuracy of sub-degrees and can provide 3-axis attitude information by comparing the detected ground pattern and the global map. Moreover, this method has advantages in the size, mass and cost of the detector system which consists of a cheap optical color camera and a single board computer. To demonstrate the method in space, we have developed a sensor system named “Deep Learning Attitude Sensor (DLAS)”. DLAS uses COTS camera modules and single board computers to reduce the cost. The obtained images are promptly analyzed with a newly developed real-time image recognition algorithms

    Asymmetric reductive cyclization using the intramolecular conjugate addition of enolates onto α,β-unsaturated sulfoxides

    Get PDF
    Li(sec-Bu)3BH-mediated reductive cyclization of optically pure 8-((S)-p-tolylsulfinyl)-(2E,7Z)-octadienoate 9 and 7-(p-tolylsulfinyl)-2,6-heptadienoate 16 afforded trans-2-((p-tolylsulfinyl)-methyl)cyclohexane-1-carboxylate and trans-2-((p-tolylsulfinyl)methyl)cyclopentane-1-carboxylate, respectively, as a single isomer

    Comparing α-carbanion-stabilizing ability of substituents using the Brook rearrangement

    Get PDF
    The α-carbanion-stabilizing ability of the phenylthio and trimethylsilyl groups was compared based on the relative rate of the base-catalyzed Brook rearrangement of the β-substituted α-silylallylalcohol

    Wide-bandgap GaN-based watt-class photonic-crystal lasers

    Get PDF
    青色GaN系フォトニック結晶レーザーの高出力・高ビーム品質動作に成功 --次世代の高品位レーザー加工、高輝度照明、水中LiDAR等の実現に向けて--. 京都大学プレスリリース. 2022-11-04.Short-wavelength (blue-violet-to-green) lasers with high power and high beam quality are required for various applications including the machining of difficult-to-process materials and high-brightness illuminations and displays. Promising light sources for such applications are wide-bandgap GaN-based photonic-crystal surface-emitting lasers (PCSELs), which are based on two-dimensional resonance in the photonic crystal. Developments of these devices have lagged behind those of longer-wavelength GaAs-based PCSELs, because device designs for achieving robust two-dimensional resonance and a nanofabrication process that avoids introducing disorders have remained elusive for wide-bandgap GaN-based materials. Here, we address these issues and successfully realize GaN-based PCSELs with high, watt-class (>1 W) output power and a circular, single-lobed beam with a very narrow (~0.2°) divergence angle at blue wavelengths. In addition, we demonstrate continuous-wave operation with a high output power (~320 mW) and a high beam quality (M²~1). Our results will enable the use of GaN-based PCSELs in the above-mentioned applications

    Auto-tracking camera for dry-box laparoscopic training

    Get PDF
    While laparoscopic surgery is less invasive than open surgery and is now common in various medical fields, laparoscopic surgery often requires more time for the operator to achieve mastery. Dry box training is one of the most important methods for developing laparoscopic skill. However, the camera is usually fixed to a particular point, which is different from practical surgery, during which the operational field is constantly adjusted by an assistant. Therefore, we introduced a camera for dry box training that can be moved by surgeons as desired by using computer vision. By detecting the ArUco marker, the camera attached onto the servomotor successfully tracked the forceps automatically. This system could easily be modified and become operable by a foot switch or voice, and collaborations between surgeons and medical engineers are expected

    The Japanese space gravitational wave antenna; DECIGO

    Get PDF
    DECi-hertz Interferometer Gravitational wave Observatory (DECIGO) is the future Japanese space gravitational wave antenna. DECIGO is expected to open a new window of observation for gravitational wave astronomy especially between 0.1 Hz and 10 Hz, revealing various mysteries of the universe such as dark energy, formation mechanism of supermassive black holes, and inflation of the universe. The pre-conceptual design of DECIGO consists of three drag-free spacecraft, whose relative displacements are measured by a differential Fabry– Perot Michelson interferometer. We plan to launch two missions, DECIGO pathfinder and pre- DECIGO first and finally DECIGO in 2024

    DECIGO pathfinder

    Get PDF
    DECIGO pathfinder (DPF) is a milestone satellite mission for DECIGO (DECi-hertz Interferometer Gravitational wave Observatory) which is a future space gravitational wave antenna. DECIGO is expected to provide us fruitful insights into the universe, in particular about dark energy, a formation mechanism of supermassive black holes, and the inflation of the universe. Since DECIGO will be an extremely large mission which will formed by three drag-free spacecraft with 1000m separation, it is significant to gain the technical feasibility of DECIGO before its planned launch in 2024. Thus, we are planning to launch two milestone missions: DPF and pre-DECIGO. The conceptual design and current status of the first milestone mission, DPF, are reviewed in this article

    Survey of Period Variations of Superhumps in SU UMa-Type Dwarf Novae

    Full text link
    We systematically surveyed period variations of superhumps in SU UMa-type dwarf novae based on newly obtained data and past publications. In many systems, the evolution of superhump period are found to be composed of three distinct stages: early evolutionary stage with a longer superhump period, middle stage with systematically varying periods, final stage with a shorter, stable superhump period. During the middle stage, many systems with superhump periods less than 0.08 d show positive period derivatives. Contrary to the earlier claim, we found no clear evidence for variation of period derivatives between superoutburst of the same object. We present an interpretation that the lengthening of the superhump period is a result of outward propagation of the eccentricity wave and is limited by the radius near the tidal truncation. We interpret that late stage superhumps are rejuvenized excitation of 3:1 resonance when the superhumps in the outer disk is effectively quenched. Many of WZ Sge-type dwarf novae showed long-enduring superhumps during the post-superoutburst stage having periods longer than those during the main superoutburst. The period derivatives in WZ Sge-type dwarf novae are found to be strongly correlated with the fractional superhump excess, or consequently, mass ratio. WZ Sge-type dwarf novae with a long-lasting rebrightening or with multiple rebrightenings tend to have smaller period derivatives and are excellent candidate for the systems around or after the period minimum of evolution of cataclysmic variables (abridged).Comment: 239 pages, 225 figures, PASJ accepte
    corecore