5,132 research outputs found

    N=2 Supermultiplet of Currents and Anomalous Transformations in Supersymmetric Gauge Theory

    Get PDF
    We examine some properties of supermultiplet consisting of the U(1)_{J} current, extended supercurrents, energy-momentum tensor and the central charge in N=2 supersymmetric Yang-Mills theory. The superconformal improvement requires adding another supermultiplet beginning with the U(1)_{R} current. We determine the anomalous (quantum mechanical) supersymmetry transformation associated with the central charge and the energy-momentum tensor to one-loop order.Comment: 8 pages, LaTe

    Energy dependence of KK^--"pppp" effective potential derived from coupled-channel Green's function

    Full text link
    We investigate the energy dependence of a single-channel effective potential between the KK^- and the "pppp"-core nucleus, which can be obtained as an KK^--"pppp" equivalent local potential from a coupled-channel model for Kˉ(NN)\bar{K}(NN)-π(ΣN)\pi(\Sigma N) systems. It turns out that the imaginary part of the resultant potential near the πΣN\pi \Sigma N decay threshold can well approximate the phase space suppression factor of KppπΣNK^-pp \to \pi \Sigma N decay modes. The effects on the pole position of the π(ΣN)\pi(\Sigma N) state in the πΣN\pi \Sigma N channel are also discussed.Comment: 4 pages, 2 figures, Proceedings of the International Conference on Exotic Atoms and Related Topics (EXA2011), September 5-9, 2011, Wien, Austria, to appear in Hyperfine Interaction

    Transverse single-spin asymmetries in proton-proton collisions at the AFTER@LHC experiment

    Get PDF
    We present results for transverse single-spin asymmetries in proton-proton collisions at kinematics relevant for AFTER, a proposed fixed-target experiment at the Large Hadron Collider. These include predictions for pion, jet, and direct photon production from analytical formulas already available in the literature. We also discuss specific measurements that will benefit from the higher luminosity of AFTER, which could help resolve an almost 40-year puzzle of what causes transverse single-spin asymmetries in proton-proton collisions.Comment: 10 pages, 4 figures; more details/discussion added to the text, references added/updated, version to appear in Advances in High Energy Physics for the Special Issue "Physics at a Fixed-Target Experiment Using the LHC Beams

    Time complexity and gate complexity

    Full text link
    We formulate and investigate the simplest version of time-optimal quantum computation theory (t-QCT), where the computation time is defined by the physical one and the Hamiltonian contains only one- and two-qubit interactions. This version of t-QCT is also considered as optimality by sub-Riemannian geodesic length. The work has two aims: one is to develop a t-QCT itself based on physically natural concept of time, and the other is to pursue the possibility of using t-QCT as a tool to estimate the complexity in conventional gate-optimal quantum computation theory (g-QCT). In particular, we investigate to what extent is true the statement: time complexity is polynomial in the number of qubits if and only if so is gate complexity. In the analysis, we relate t-QCT and optimal control theory (OCT) through fidelity-optimal computation theory (f-QCT); f-QCT is equivalent to t-QCT in the limit of unit optimal fidelity, while it is formally similar to OCT. We then develop an efficient numerical scheme for f-QCT by modifying Krotov's method in OCT, which has monotonic convergence property. We implemented the scheme and obtained solutions of f-QCT and of t-QCT for the quantum Fourier transform and a unitary operator that does not have an apparent symmetry. The former has a polynomial gate complexity and the latter is expected to have exponential one because a series of generic unitary operators has a exponential gate complexity. The time complexity for the former is found to be linear in the number of qubits, which is understood naturally by the existence of an upper bound. The time complexity for the latter is exponential. Thus the both targets are examples satisfyng the statement above. The typical characteristics of the optimal Hamiltonians are symmetry under time-reversal and constancy of one-qubit operation, which are mathematically shown to hold in fairly general situations.Comment: 11 pages, 6 figure

    Critical Exponents and Stability at the Black Hole Threshold for a Complex Scalar Field

    Full text link
    This paper continues a study on Choptuik scaling in gravitational collapse of a complex scalar field at the threshold for black hole formation. We perform a linear perturbation analysis of the previously derived complex critical solution, and calculate the critical exponent for black hole mass, γ0.387106\gamma \approx 0.387106. We also show that this critical solution is unstable via a growing oscillatory mode.Comment: 15 pages of latex/revtex; added details of numerics, in press in Phys Rev D; 1 figure included, or available by anonymous ftp to ftp://ftp.itp.ucsb.edu/figures/nsf-itp-95-58.ep

    A Study of Cooling Time Reduction of Interferometric Cryogenic Gravitational Wave Detectors Using a High-Emissivity Coating

    Full text link
    In interferometric cryogenic gravitational wave detectors, there are plans to cool mirrors and their suspension systems (payloads) in order to reduce thermal noise, that is, one of the fundamental noise sources. Because of the large payload masses (several hundred kg in total) and their thermal isolation, a cooling time of several months is required. Our calculation shows that a high-emissivity coating (e.g. a diamond-like carbon (DLC) coating) can reduce the cooling time effectively by enhancing radiation heat transfer. Here, we have experimentally verified the effect of the DLC coating on the reduction of the cooling time.Comment: 8 pages, 9 figures, Proceedings of CEC/ICMC 201

    Dust in the wind: Crystalline silicates, corundum and periclase in PG 2112+059

    Full text link
    We have determined the mineralogical composition of dust in the Broad Absorption Line (BAL) quasar PG 2112+059 using mid-infrared spectroscopy obtained with the Spitzer Space Telescope. From spectral fitting of the solid state features, we find evidence for Mg-rich amorphous silicates with olivine stoichiometry, as well as the first detection of corundum (Al_2O_3) and periclase (MgO) in quasars. This mixed composition provides the first direct evidence for a clumpy density structure of the grain forming region. The silicates in total encompass 56.5% of the identified dust mass, while corundum takes up 38 wt.%. Depending on the choice of continuum, a range of mass fractions is observed for periclase ranging from 2.7% in the most conservative case to 9% in a less constrained continuum. In addition, we identify a feature at 11.2 micron as the crystalline silicate forsterite, with only a minor contribution from polycyclic aromatic hydrocarbons. The 5% crystalline silicate fraction requires high temperatures such as those found in the immediate quasar environment in order to counteract rapid destruction from cosmic rays.Comment: 2 figure

    Time Optimal Unitary Operations

    Get PDF
    Extending our previous work on time optimal quantum state evolution, we formulate a variational principle for the time optimal unitary operation, which has direct relevance to quantum computation. We demonstrate our method with three examples, i.e. the swap of qubits, the quantum Fourier transform and the entangler gate, by choosing a two-qubit anisotropic Heisenberg model.Comment: 4 pages, 1 figure. References adde
    corecore