
Research Article
Transverse Single-Spin Asymmetries in Proton-Proton
Collisions at the AFTER@LHC Experiment

K. Kanazawa,1 Y. Koike,2 A. Metz,1 and D. Pitonyak3

1Department of Physics, SERC, Temple University, Philadelphia, PA 19122, USA
2Department of Physics, Niigata University, Ikarashi, Niigata 950-2181, Japan
3RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, NY 11973, USA

Correspondence should be addressed to D. Pitonyak; dpitonyak@quark.phy.bnl.gov

Received 9 March 2015; Accepted 24 April 2015

Academic Editor: Jean-Philippe Lansberg

Copyright © 2015 K. Kanazawa et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The
publication of this article was funded by SCOAP3.

We present results for transverse single-spin asymmetries in proton-proton collisions at kinematics relevant for AFTER, a proposed
fixed-target experiment at the Large Hadron Collider. These include predictions for pion, jet, and direct photon production from
analytical formulas already available in the literature. We also discuss specific measurements that will benefit from the higher
luminosity of AFTER, which could help resolve an almost 40-year puzzle of what causes transverse single-spin asymmetries in
proton-proton collisions.

1. Introduction

Transverse single-spin asymmetries (TSSAs), denoted by𝐴
𝑁
,

have been a fundamental observable since the mid-1970s to
test perturbative quantum chromodynamics (pQCD). Such
measurements were first conducted at FermiLab, where large
effects were found in 𝑝𝐵𝑒 → Λ

↑
𝑋 [1]. These results

contradicted the näıve collinear parton model, which said
that 𝐴

𝑁
should be extremely small [2], and doubts were

raised as to whether pQCD can actually describe these
reactions [2]. However, in the 1980s it was shown that if
one went beyond the parton model and included collinear
twist-3 (CT3) quark-gluon-quark correlations in the nucleon,
substantial TSSAs could be generated [3, 4]. In the 1990s this
CT3 approach was worked out in more detail for proton-
proton collisions, first for direct photon production [5–7] and
then for pion production [8]. Over the last decade, several
other analyses furthered the development of this formalism;
see [9–19] and references therein. During the same time,
another mechanism was also put forth to explain TSSAs in
proton-proton collisions. This approach involves the Sivers
[20, 21], Collins [22], and Boer-Mulders [23, 24] trans-
verse momentum dependent (TMD) functions and became
known as the Generalized Parton Model (GPM); see [25–29]

and references therein. (We mention that since most likely
a rigorous factorization formula involving TMD functions
does not hold for single-inclusive processes (which have
only one scale), the GPM can only be considered a phe-
nomenological model.) In addition to all of this theoretical
work, many experimental measurements of 𝐴

𝑁
have been

performed at proton-(anti)proton accelerators [30–42]. Most
of the experimental data in the more negative 𝑥

𝐹
region

has come in the form of light-hadron asymmetries 𝐴ℎ
𝑁
,

for example, ℎ = 𝜋, 𝐾, 𝜂, with the exception of the jet
asymmetry 𝐴jet

𝑁
measured a few years ago at the Relativistic

Heavy Ion Collider (RHIC) by the A
𝑁
DYCollaboration [40].

(Throughout the paper we will use the convention 𝑥
𝐹
=

2𝑙
𝑧
/√𝑆, where 𝑙 is the momentum of the outgoing particle,

and the transversely polarized proton moves along the −𝑧-
axis. That is, 𝑥

𝐹
→ −1 means large momentum fractions

𝑥
↑ of the parton probed inside the transversely polarized

proton.This setup causes 𝑥
𝐹
to be opposite in sign to the one

used in collider experiments (like those at RHIC).) Plans are
also in place to measure the direct photon asymmetry 𝐴𝛾

𝑁

at RHIC by both the PHENIX Collaboration and the STAR
Collaboration [43–45].

Although much progress has been made in understand-
ing TSSAs, there is not a definitive answer on what their
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origin might be. In the CT3 approach it was assumed for
many years that a soft-gluon pole (SGP) chiral-even quark-
gluon-quark (𝑞𝑔𝑞) matrix element called the Qiu-Sterman
(QS) function 𝑇

𝐹
(𝑥, 𝑥) was the main cause of 𝐴𝜋

𝑁
[8, 11].

However, this led to a so-called “sign-mismatch” between
the QS function and the TMD Sivers function 𝑓⊥

1𝑇
extracted

from semi-inclusive deep-inelastic scattering (SIDIS) [46].
This issue could not be resolved through more flexible
parameterizations of the Sivers function [47]. Moreover, the
authors of [48] argued, by looking at 𝐴

𝑁
data on the target

TSSA in inclusive DIS [49, 50], that 𝑇
𝐹
(𝑥, 𝑥) cannot be the

main source of 𝐴𝜋
𝑁
. This observation led us last year in [51]

to analyze𝐴𝜋
𝑁
by including not only the QS function but also

the fragmentation mechanism, whose analytical formula was
first fully derived in [18] (the so-called “derivative term” was
first computed in [52]) (see also [17, 53, 54] for fragmentation
terms in other processes). We found in this situation for
the first time in pQCD that one can fit all RHIC high
transverse momentum pion data very well without any sign-
mismatch issue. Furthermore, we showed that a simultaneous
description of TSSAs in 𝑝↑𝑝 → 𝜋𝑋, SIDIS, and 𝑒+𝑒− →
ℎ
1
ℎ
2
𝑋 is possible. Nevertheless, more work must be done

to confirm/refute this explanation and its predictions. We
mention that, in the GPM, one cannot draw a definitive
conclusion as to whether the Sivers or Collins mechanism is
themain cause of𝐴𝜋

𝑁
[28, 29]. (In principle the Boer-Mulders

function and gluon Sivers function can also contribute to the
GPM formalism, but these pieces have not been analyzed in
the literature.)This is due to the theoretical error bands being
too large, since the associated TMD functions are mostly
unconstrained in the large-𝑥↑ regime covered by the data
[28, 29]. For a detailed discussion of the GPM formalism and
its predictions for the AFTER experiment, see [55].

In addition, in order to have a complete knowledge of
TSSAs, it is important to have a “clean” extraction of the QS
function from observables like 𝐴jet

𝑁
and 𝐴𝛾

𝑁
that do not have

any fragmentation contributions. (We will ignore photons
coming from fragmentation [56], which can be largely sup-
pressed by using isolation cuts.) (For recent analyses of𝐴𝛾

𝑁
in

𝑝
↑
𝐴 collisions, see [57, 58].)This is necessary in order to help

resolve the sign-mismatch issue and better understand the
role of rescattering effects in the nucleon. The jet asymmetry
has been studied in [11, 46, 59, 60] and the direct photon
asymmetry has been investigated in [6, 11, 12, 56, 59–64]. It
is important to point out that other contributions to 𝐴jet

𝑁
and

𝐴
𝛾

𝑁
exist besides the one from the (SGP 𝑞𝑔𝑞 chiral-even)

QS function.These other pieces include (i) soft-fermion pole
(SFP) chiral-even 𝑞𝑔𝑞 functions, (ii) SGP and SFP 𝑞𝑔𝑞 chiral-
odd functions, and (iii) SGP trigluon functions. For 𝐴𝛾

𝑁
the

numerical analyses in [59, 64] show that (i) is negligible for
𝑥
𝐹
< 0 while the study in [64] draws a similar conclusion

for (ii) as does the work in [62] for (iii). That is, for 𝐴𝛾
𝑁
, the

QS function dominates the asymmetry. We mention that, at
present in the GPM, 𝐴𝛾

𝑁
is predicted to have the opposite

sign to that from the CT3 approach [29]. Therefore, as was
emphasized in [64], this observable could allow us for the
first time to clearly distinguish between the two frameworks
as well as learn about the process dependence of the Sivers

function [65], which is a feature of this nonperturbative
object that is crucial to our current understanding of TMD
functions.

For 𝐴jet
𝑁
the conclusions as to which piece dominates are

not as clear. The study in [66, 67] provides evidence that
(ii) should be small in the whole 𝑥

𝐹
-region. The work in

[59] shows that the same is most likely true for (i) but that
analysis suffers from the sign-mismatch issue. Also, in [19]
there is an indication that (iii) could be significant.Therefore,
it will be necessary to reassess the impact of (i) and (iii) on
𝐴

jet
𝑁
. Nevertheless, one can gain insight into these other terms

by looking at the contribution from the QS function and
comparing it with data.

Given the open issues that still remain, it is an opportune
time for the Large Hadron Collider (LHC) to produce
data on TSSAs in proton-proton collisions via the AFTER
experiment. These measurements will not only add to the
data from FermiLab, AGS, and RHIC but also, through the
high luminosity of the experiment [68, 69], probe certain
features that remain ambiguous. For example, the behavior
of 𝐴𝜋
𝑁
at large pion transverse momentum 𝑙

𝑇
appears to fall

off very slowly (or is even flat), a feature which the theory
says should persist to high 𝑙

𝑇
[29, 51, 55, 59] (see also [70]

in the context of Λ↑ production). However, the data from
RHIC [71] has too large error bars (or not enough statistics)
in this high-𝑙

𝑇
region to ascertain whether or not this is true.

Also, 𝐴jet
𝑁
measured by A

𝑁
DY [40] has large error bars as 𝑥

𝐹

becomesmore negative, whichmakes it difficult to determine
whether or not the QS function alone can describe that
data. Moreover, as previously mentioned,𝐴𝛾

𝑁
has never been

measured before, yet it could be a tremendous opportunity to
learn about the process dependence of the Sivers function and
distinguish between the CT3 and GPM frameworks. Already,
PHENIX and STAR plan to carry out such experiments [43–
45].

Therefore, in this paper we give predictions within the
CT3 formalism for 𝐴𝜋

𝑁
, 𝐴jet
𝑁
, and 𝐴𝛾

𝑁
at AFTER@LHC

kinematics. (For related work on charmonium and bottomo-
nium production we refer to [72, 73].) Since the relevant
analytical formulas already exist within the literature, in
Section 2 we focus on the phenomenology and refer the
reader to the appropriate papers on the underlying theory.
These numerical results are summarized in Section 3, and
there we highlight again howAFTER can offer unique insight
into TSSAs in proton-proton collisions, which is a truly
fundamental observable to test pQCD at higher twist.

2. Pion, Photon, and Jet TSSAs at AFTER

We start first with 𝐴𝜋
𝑁
, where we follow our numerical

work in [51]. (We also refer the reader to [11, 13, 18] for
more formal discussions of the relevant analytical formulas.)
There we took into account the contribution from the QS
function and the fragmentation term. The former has a
model-independent relation to the Sivers function [74], while
the latter involves three nonperturbative CT3 fragmentation
functions (FFs): �̂�, �̂�I

𝐹𝑈
, and 𝐻. Of these, �̂� has a model-

independent connection to the Collins function [18, 52]
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Figure 1: 𝐴𝜋
𝑁
versus 𝑥

𝐹
at fixed 𝑦 = −1.5 (a) and 𝑦 = −3 (b) and 𝐴𝜋

𝑁
versus 𝑦 at fixed 𝑙

𝑇
= 3GeV (c). All plots are at √𝑆 = 115GeV for pion

production at AFTER.

and 𝐻 can be written in terms of the other two through
a QCD equation-of-motion relation [18]. In Figures 1 and
2 we provide predictions for neutral and charged pion
production at AFTER based on our fit in [51]. One sees
in Figure 1 from 𝐴

𝜋

𝑁
versus 𝑥

𝐹
that the magnitude of the

asymmetry can be anywhere from ∼5–10% and from 𝐴
𝜋

𝑁

versus 𝑦 that it increases withmore negative (center-of-mass)
rapidity 𝑦. (Recall the relation between 𝑥

𝐹
, 𝑦, and 𝑙

𝑇
: 𝑥
𝐹
=

2 𝑙
𝑇
sinh(𝑦)/√𝑆, so𝐴

𝑁
versus𝑥

𝐹
(𝐴
𝑁
versus𝑦) at fixed𝑦 (𝑙

𝑇
)

implies a running in 𝑙
𝑇
(𝑥
𝐹
).) One also notices that 𝐴𝜋

𝑁
turns

over at more negative 𝑥
𝐹
values, which was also observed in

some of the STAR data [33, 34, 39]. In Figure 2, where we
show𝐴𝜋

𝑁
versus 𝑙

𝑇
, one sees that the asymmetry is flat or falls

off very slowly as 𝑙
𝑇
increases, a feature that had also been

measured by STAR [71]. It will be important to establish with

more precision if this flatness persists at higher-𝑙
𝑇
values, say

12–15GeV, and AFTER, with its much higher luminosity, will
be in a position to make such a measurement.

We next look at 𝐴jet
𝑁

and 𝐴𝛾
𝑁
, which do not receive

contributions from FFs. As we discussed in Section 1, the
former may receive nonnegligible contributions from terms
other than the QS function, while for the latter we recently
showed in [64] that the QS function is the dominant piece to
that asymmetry. (All of the analytical expressions for𝐴𝛾

𝑁
can

be found in [64] while those for𝐴jet
𝑁
are determined simply by

setting𝐷
1
(𝑧) (the unpolarized FF) to 𝛿(1−𝑧) in the equations

for𝐴𝜋
𝑁
given in [11, 14, 19, 66, 67].) (We note the𝐴𝛾

𝑁
analytical

formulas for the piece involving chiral-odd functions are new
from [64], while those involving chiral-even functions were
derived before in the literature, and the relevant references are
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Figure 2: 𝐴𝜋
𝑁
versus 𝑙

𝑇
at fixed 𝑥

𝐹
= −0.2 (a), 𝑥

𝐹
= −0.4 (b), and 𝑥

𝐹
= −0.6 (c) at√𝑆 = 115GeV for pion production at AFTER.

cited therein.) However, given that the other pieces for 𝐴jet
𝑁

are not reliably known, for that asymmetry we will only look
at the contribution from the QS function using its relation
to the Sivers function, while for 𝐴𝛾

𝑁
we adopt our work in

[64]. In Figures 3 and 4 we show results for jet and photon
production at AFTER.We see that𝐴jet

𝑁
is very small, although

we caution the reader that the Sivers function (which we
use as input for the QS function) is mostly unconstrained
in the large-𝑥↑ region, and when this uncertainty is taken
into account, one could obtain ameasurable asymmetry [60].
Also, as wementioned, there is the potential for (chiral-even)
SFP and/or trigluon functions to make an impact. Therefore,
in order to determine if the Sivers function alone can describe
𝐴

jet
𝑁
, along with the current data from A

𝑁
DY, we need more

precise data in the far backward region, which should be

possible at AFTER. (We note that STAR has preliminary data
on electromagnetic “jets” that could also be helpful [75].)

Unlike the jet asymmetry, 𝐴𝛾
𝑁
could be on the order of

∼−5% at less negative 𝑥
𝐹
and more negative 𝑦 (see Figures

3(a) and 3(b)) or smaller 𝑙
𝑇
and less negative𝑥

𝐹
(see Figure 4).

Both of these observations are consistent with the behavior
of 𝐴𝛾
𝑁
as a function of rapidity (see Figure 3(c)), where the

asymmetry peaks at 𝑦 ∼ −2 (with 𝑙
𝑇
= 3GeV), which

corresponds to 𝑥
𝐹
∼ −0.2. Since the QS function is the

dominant source of the asymmetry, we canhave “clean” access
to it. We state again that the GPM framework at present
predicts 𝐴𝛾

𝑁
to be positive [29]. Therefore, a clear nonzero

signal for this observable would help to distinguish between
the CT3 and GPM formalisms. However, we emphasize that
should data contradict the predictions of the GPM, this does
not invalidate the results obtained for TMD observables that
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Figure 3: 𝐴
𝑁
versus 𝑥

𝐹
at fixed 𝑦 = −1.5 (a) and 𝑦 = −3 (b) and 𝐴

𝑁
versus 𝑦 at fixed 𝑙

𝑇
= 3GeV (c). All plots are at √𝑆 = 115GeV for

jet/photon production at AFTER.

are based on rigorous TMD factorization proofs. Also, since
we use the Sivers function from SIDIS as our input for
the QS function, we can learn about the predicted process
dependence of the Sivers function.

3. Summary and Outlook

In this paper we have discussed TSSAs in single-inclusive
pion, jet, and photon production from proton-proton colli-
sions, that is, 𝑝↑𝑝 → {𝜋, jet, 𝛾} 𝑋, at kinematics relevant
for the proposed AFTER@LHC experiment. These asym-
metries have been fundamental observables to test pQCD
at higher twist for close to 40 years, and much work has
been performed on both the theoretical and experimental
sides. Nevertheless, issues still remain as to the origin of
these TSSAs, which makes a measurement of 𝐴

𝑁
at the LHC

via the AFTER experiment timely. For 𝐴𝜋
𝑁

we have found

that AFTER should expect (absolute) asymmetries on the
order of 5–10% as a function of 𝑥

𝐹
and increasing as the

rapidity becomes more negative. Also, the 𝑙
𝑇
dependence of

𝐴
𝜋

𝑁
still falls off slowly and flattens out at high 𝑙

𝑇
. For 𝐴jet

𝑁

we predict a very small asymmetry, but we must remember
that uncertainties in the Sivers function could allow for a
measurable observable [60] and also that other contributions
(like chiral-even SFP and trigluon) could make an impact.
Lastly, for 𝐴𝛾

𝑁
we expect asymmetries on the order of ∼−5%

and decreasing with more negative 𝑥
𝐹
and increasing 𝑙

𝑇
.

These are opposite in sign to the ones predicted from the
GPM [29].

Even though these observables have been (or are planned
to be) measured at RHIC, AFTER has the ability, through
its much higher luminosity, to not only supplement the
RHIC data but also provide important information on still
unknown issues. For example, it will be key to determine
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Figure 4: 𝐴
𝑁
versus 𝑙

𝑇
at fixed 𝑥

𝐹
= −0.2 (a), 𝑥

𝐹
= −0.4 (b), and 𝑥

𝐹
= −0.6 (c) at√𝑆 = 115GeV for jet/photon production at AFTER.

if 𝐴𝜋
𝑁

stays flat at higher-𝑙
𝑇
, say to 12–15GeV, like theory

predicts [29, 51, 55, 59, 70] and STAR has evidence for
[71]. Also, higher statistics should allow for more precise
measurements of 𝐴jet

𝑁
at more negative 𝑥

𝐹
, which will be

necessary to determine if the QS function is the sole source
of that asymmetry. Moreover, 𝐴𝛾

𝑁
has never been measured

before and provides the opportunity to clearly distinguish
between the CT3 and GPM frameworks and learn about
the process dependence of the Sivers function. Given the
questions that remain as to the origin of TSSAs, which has
been unresolved for almost 40 years, AFTER could provide
valuable data on these observables.
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