371 research outputs found
MHC class II DQB diversity in the Japanese black bear, Ursus thibetanus japonicus
BackgroundThe major histocompatibility complex (MHC) genes are one of the most important genetic systems in the vertebrate immune response. The diversity of MHC genes may directly influence the survival of individuals against infectious disease. However, there has been no investigation of MHC diversity in the Asiatic black bear (Ursus thibetanus). Here, we analyzed 270-bp nucleotide sequences of the entire exon 2 region of the MHC DQB gene by using 188 samples from the Japanese black bear (Ursus thibetanus japonicus) from 12 local populations. ResultsAmong 185 of 188 samples, we identified 44 MHC variants that encoded 31 different amino acid sequences (allotypes) and one putative. The phylogenetic analysis suggests that MHC variants detected from the Japanese black bear are derived from the DQB locus. One of the 31 DQB allotypes, Urth-DQB*01, was found to be common to all local populations. Moreover, this allotype was shared between the black bear on the Asian continent and the Japanese black bear, suggesting that Urth-DQB*01 might have been maintained in the ancestral black bear population for at least 300,000 years. Our findings, from calculating the ratio of non-synonymous to synonymous substitutions, indicate that balancing selection has maintained genetic variation of peptide-binding residues at the DQB locus of the Japanese black bear. From examination of genotype frequencies among local populations, we observed a considerably lower level of observed heterozygosity than expected. ConclusionsThe low level of observed heterozygosity suggests that genetic drift reduced DQB diversity in the Japanese black bear due to a bottleneck event at the population or species level. The decline of DQB diversity might have been accelerated by the loss of rare variants that have been maintained by negative frequency-dependent selection. Nevertheless, DQB diversity of the black bear appears to be relatively high compared with some other endangered mammalian species. This result suggests that the Japanese black bears may also retain more potential resistance against pathogens than other endangered mammalian species. To prevent further decline of potential resistance against pathogens, a conservation policy for the Japanese black bear should be designed to maintain MHC rare variants in each local population
Implicitly and explicitly measured attitudes towards foreigners: A dual-process model perspective
Intergroup attitudes are one of the individual difference constructs which may influence motivation to learn a second language (L2) or willingness to communicate in an L2. Drawing on the APE model (a dual-process model which postulates the distinction between explicitly and implicitly measured attitudes), the current study examined 71 Japanese university students' attitudes towards foreigners by utilizing three types of attitudinal measures: self-evaluation about one's prejudice towards foreigners, verbal reports of images about foreigners, and one's implicit association scores obtained by means of the filtering unconscious matching implicit emotions (FUMIE) test. Results indicated that the participants tended to respond in a neutral way on the self-evaluation, whereas the FUMIE test indicated significantly positive attitudes towards foreigners. Further, a dissociation of implicitly and explicitly measured attitudes was found. Finally, the three measures had no significant impact on motivational intensity. The findings are discussed in terms of the dual-process model of attitudes, and implications are provided for future research on intergroup attitudes in the field ofL2 learning and communication.ArticleJABAET Journal. 14/15:39-58 (2011)journal articl
MHC class II DQB diversity in the Japanese black bear, Ursus thibetanus japonicus
application/pdfBackground
The major histocompatibility complex (MHC) genes are one of the most important genetic systems in the vertebrate immune response. The diversity of MHC genes may directly influence the survival of individuals against infectious disease. However, there has been no investigation of MHC diversity in the Asiatic black bear (Ursus thibetanus). Here, we analyzed 270-bp nucleotide sequences of the entire exon 2 region of the MHC DQB gene by using 188 samples from the Japanese black bear (Ursus thibetanus japonicus) from 12 local populations.
Results
Among 185 of 188 samples, we identified 44 MHC variants that encoded 31 different amino acid sequences (allotypes) and one putative. The phylogenetic analysis suggests that MHC variants detected from the Japanese black bear are derived from the DQB locus. One of the 31 DQB allotypes, Urth-DQB*01, was found to be common to all local populations. Moreover, this allotype was shared between the black bear on the Asian continent and the Japanese black bear, suggesting that Urth-DQB*01 might have been maintained in the ancestral black bear population for at least 300,000 years. Our findings, from calculating the ratio of non-synonymous to synonymous substitutions, indicate that balancing selection has maintained genetic variation of peptide-binding residues at the DQB locus of the Japanese black bear. From examination of genotype frequencies among local populations, we observed a considerably lower level of observed heterozygosity than expected.
Conclusions
The low level of observed heterozygosity suggests that genetic drift reduced DQB diversity in the Japanese black bear due to a bottleneck event at the population or species level. The decline of DQB diversity might have been accelerated by the loss of rare variants that have been maintained by negative frequency-dependent selection. Nevertheless, DQB diversity of the black bear appears to be relatively high compared with some other endangered mammalian species. This result suggests that the Japanese black bears may also retain more potential resistance against pathogens than other endangered mammalian species. To prevent further decline of potential resistance against pathogens, a conservation policy for the Japanese black bear should be designed to maintain MHC rare variants in each local population.journal articl
Differential remodelling of peroxisome function underpins the environmental and metabolic adaptability of diplonemids and kinetoplastids
The remodelling of organelle function is increasingly appreciated as a central driver of eukaryotic biodiversity and evolution. Kinetoplastids including Trypanosoma and Leishmania have evolved specialized peroxisomes, called glycosomes. Glycosomes uniquely contain a glycolytic pathway as well as other enzymes, which underpin the physiological flexibility of these major human pathogens. The sister group of kinetoplastids are the diplonemids, which are among the most abundant eukaryotes in marine plankton. Here we demonstrate the compartmentalization of gluconeogenesis, or glycolysis in reverse, in the peroxisomes of the free-living marine diplonemid, Diplonema papillatum. Our results suggest that peroxisome modification was already under way in the common ancestor of kinetoplastids and diplonemids, and raise the possibility that the central importance of gluconeogenesis to carbon metabolism in the heterotrophic free-living ancestor may have been an important selective driver. Our data indicate that peroxisome modification is not confined to the kinetoplastid lineage, but has also been a factor in the success of their free-living euglenozoan relatives
First Data Release of the Hyper Suprime-Cam Subaru Strategic Program
The Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP) is a three-layered
imaging survey aimed at addressing some of the most outstanding questions in
astronomy today, including the nature of dark matter and dark energy. The
survey has been awarded 300 nights of observing time at the Subaru Telescope
and it started in March 2014. This paper presents the first public data release
of HSC-SSP. This release includes data taken in the first 1.7 years of
observations (61.5 nights) and each of the Wide, Deep, and UltraDeep layers
covers about 108, 26, and 4 square degrees down to depths of i~26.4, ~26.5, and
~27.0 mag, respectively (5sigma for point sources). All the layers are observed
in five broad bands (grizy), and the Deep and UltraDeep layers are observed in
narrow bands as well. We achieve an impressive image quality of 0.6 arcsec in
the i-band in the Wide layer. We show that we achieve 1-2 per cent PSF
photometry (rms) both internally and externally (against Pan-STARRS1), and ~10
mas and 40 mas internal and external astrometric accuracy, respectively. Both
the calibrated images and catalogs are made available to the community through
dedicated user interfaces and database servers. In addition to the pipeline
products, we also provide value-added products such as photometric redshifts
and a collection of public spectroscopic redshifts. Detailed descriptions of
all the data can be found online. The data release website is
https://hsc-release.mtk.nao.ac.jp/.Comment: 34 pages, 20 figures, 7 tables, moderate revision, accepted for
publication in PAS
Blood Rheology and Platelet Function in Untreated Early-Stage Essential Hypertensives Complicated with Metabolic Syndrome
We examined whether hemorheology and platelet function are affected in essential hypertensives (EHTs) of the World Health Organization stage I when complicated with metabolic syndrome (Mets). In 156 untreated EHTs, blood viscosity and platelet surface markers were determined. Blood viscosity was significantly elevated in 54 subjects with Mets compared with 102 subjects without Mets. Hematocrit and plasma viscosity increased in the group with Mets, although red blood cell rigidity index “k” did not differ between groups. As a whole group, blood viscosity correlated positively with hematocrit and plasma viscosity. Additionally, plasma viscosity correlated positively with plasma leptin, triglyceride, homeostasis model assessment index, C-reactive protein, and plasma fibrinogen, but negatively with high-density lipoprotein cholesterol. In contrast, no differences were seen in platelet surface markers between groups. In conclusion, EHTs of the early stage complicated with Mets are characterized by increased blood viscosity due to hemoconcentration and increased plasma viscosity
Mutational History of a Human Cell Lineage from Somatic to Induced Pluripotent Stem Cells.
The accuracy of replicating the genetic code is fundamental. DNA repair mechanisms protect the fidelity of the genome ensuring a low error rate between generations. This sustains the similarity of individuals whilst providing a repertoire of variants for evolution. The mutation rate in the human genome has recently been measured to be 50-70 de novo single nucleotide variants (SNVs) between generations. During development mutations accumulate in somatic cells so that an organism is a mosaic. However, variation within a tissue and between tissues has not been analysed. By reprogramming somatic cells into induced pluripotent stem cells (iPSCs), their genomes and the associated mutational history are captured. By sequencing the genomes of polyclonal and monoclonal somatic cells and derived iPSCs we have determined the mutation rates and show how the patterns change from a somatic lineage in vivo through to iPSCs. Somatic cells have a mutation rate of 14 SNVs per cell per generation while iPSCs exhibited a ten-fold lower rate. Analyses of mutational signatures suggested that deamination of methylated cytosine may be the major mutagenic source in vivo, whilst oxidative DNA damage becomes dominant in vitro. Our results provide insights for better understanding of mutational processes and lineage relationships between human somatic cells. Furthermore it provides a foundation for interpretation of elevated mutation rates and patterns in cancer
Na依存性PiトランスポーターNpt2cは、KlothoノックアウトマウスPi恒常性において成長期と成熟期では異なる作用を有する
SLC34A3/NPT2c/NaPi-2c/Npt2c is a growth-related NaPi cotransporter that mediates the uptake of renal sodium-dependent phosphate (Pi). Mutation of human NPT2c causes hereditary hypophosphatemic rickets with hypercalciuria. Mice with Npt2c knockout, however, exhibit normal Pi metabolism. To investigate the role of Npt2c in Pi homeostasis, we generated α-klotho−/−/Npt2c−/− (KL2cDKO) mice and analyzed Pi homeostasis. α-Klotho−/− (KLKO) mice exhibit hyperphosphatemia and markedly increased kidney Npt2c protein levels. Genetic disruption of Npt2c extended the lifespan of KLKO mice similar to that of α-Klotho−/−/Npt2a−/− mice. Adult KL2cDKO mice had hyperphosphatemia, but analysis of Pi metabolism revealed significantly decreased intestinal and renal Pi (re)absorption compared with KLKO mice. The 1,25-dihydroxy vitamin D3 concentration was not reduced in KL2cDKO mice compared with that in KLKO mice. The KL2cDKO mice had less severe soft tissue and vascular calcification compared with KLKO mice. Juvenile KL2cDKO mice had significantly reduced plasma Pi levels, but Pi metabolism was not changed. In Npt2cKO mice, plasma Pi levels began to decrease around the age of 15 days and significant hypophosphatemia developed within 21 days. The findings of the present study suggest that Npt2c contributes to regulating plasma Pi levels in the juvenile stage and affects Pi retention in the soft and vascular tissues in KLKO mice
Lack of partial renal response by 12 weeks after induction therapy predicts poor renal response and systemic damage accrual in lupus nephritis class III or IV
BACKGROUND: Lupus nephritis class III or IV is associated with a poor prognosis for both patient and renal survival. Recommendations for the management of lupus nephritis have recently been established, and changing therapies is recommended for patients who do not respond adequately to induction therapy. However, it remains a major challenge to determine when to switch the treatment. In this study, we identified early prognostic factors capable of predicting poor renal outcome as well as overall damage accrual in patients with lupus nephritis class III or IV. METHODS: Eighty patients with biopsy-proven lupus nephritis class III or IV were retrospectively recruited and divided into two groups: those with complete renal response (CR) or non-CR at 3 years after induction therapy. We investigated when clinical responses were obtained at each observational period from baseline to year 3. Clinical responses were divided into three groups: CR, partial renal response (PR), and non-PR. Furthermore, patients were assessed using the Systemic Lupus International Collaborating Clinics/American College of Rheumatology Damage Index (SDI) and cumulative dose of corticosteroid for 3 years. RESULTS: Forty-four patients with CR and thirty-six with non-CR were enrolled. The cumulative CR rate was 85.0%. PR rates of patients with CR were significantly higher than those with non-CR from week 12 (p < 0.01). We identified the achievement of PR at 12 weeks as an independent predictor (OR 3.57, p = 0.03) by multivariate analysis. We next divided all patients into two groups according to PR achievement at week 12. The cumulative CR rate of the patients who achieved PR at week 12 was significantly higher than that of those who did not (96.5% vs 69.2%, p < 0.001). Furthermore, a significantly higher SDI and cumulative dose of corticosteroid were seen in the patients who did not achieve PR at week 12 than in those who did, regardless of their CR status, at year 3. CONCLUSIONS: Lack of PR at week 12 predicts a lower likelihood of achieving CR at 3 years and a higher SDI
- …
